期刊文献+

置换群与整数间一对一Hash函数的构建 被引量:2

Construction of one-for-one Hash function mapping between permutation group and integral number
下载PDF
导出
摘要 为了提高量子可逆逻辑电路自动生成与优化的效率,给出了一个在置换群与整数域上满足一对一映射的Hash函数构建方法.一个n×n的量子可逆逻辑门的输入和输出对可有2n!种组合,若将一个组合对应一个置换,则一切2n次置换的集合就组成一个置换群.Hash函数H(X)利用每一个置换中数字的排列位置,求出该数字的逆序数并计算其函数值,将置换群的元素X(a0a1…a2n-1)映射到整数Z∈{0,1,…,2n!-1}的集合上,快速确定计算位置.该函数不但可以大大提高量子可逆逻辑综合算法的效率,而且结构简单,性质良好,具有一般性意义. For improving the efficiency of reversible quantum, a construction of one-for-one Hash function logic circuit automation and optimization of mapping between permutation group and integral number is proposed. There are 2^n ! combinatorial duals of input/output in a reversible logic gate of n x n quantum. If a combinatorial dual corresponds to a permutation, then a permutation group can be created with the set composed by all 2^n permutations. The Hash function H(X) maps an element X(αoα1…α2n-1 ) of a permutation group onto an integer Z ∈ { 0,1 ,...,2^n ! - 1 t by counting a- thwart ordinal number of every number in a permutation by using its arrangement and computing its function value, and quickly confirming the position. The efficiency of synthetic algorithms for reversible logic of quantum can be greatly improved by using this function. Moreover, this function has simple structure, good performance and universality.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第2期225-227,共3页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(60572071) 江苏省自然科学基金资助项目(BK2005053,BM2006504,BK2007104) 江苏省高校自然科学基金资助项目(06KJB520137).
关键词 HASH函数 置换群 量子信息 可逆逻辑 Hash function permutation group quantum information reversible logic
  • 相关文献

参考文献8

  • 1Agrawal A, Jha N K. Synthesis of reversible logic [ C ]//Proceedings of the Design, Automation and Test in Europe Conference and Exhibition. Paris, 2004,2: 1384 - 1385. 被引量:1
  • 2何雨果,孙吉贵.基于Haar小波的多尺度分析量子电路[J].科学通报,2005,50(20):2314-2316. 被引量:5
  • 3Bennett C H. Logical reversibility of computation[J]. IBM Journal of Research and Development, 1973,17 (6) :525 -532. 被引量:1
  • 4Shende V V, Prasad A K, Markov I L, et al. Reversible logic circuit synthesis [ C ]//Proceedings of the ACM/IEEE International Conference on Computer-Aided Design. San Jose, California, 2002:125 - 132. 被引量:1
  • 5Shende V V, Prasad A K, Markov I L, et al. Synthesis of reversible logic circuits [J]. IEEE Trans on Circuits and Systems-I , 2003, 22(6):723-729. 被引量:1
  • 6Miller D M, Maslov D, Dueck G W. A transformation based algorithm for reversible logic synthesis [C ]//Proceedings of the 40th Design Automation Conference, Anaheim, CA, USA, 2003:318-323. 被引量:1
  • 7Song X Y, Yang G W, Perkowski M, et al, Algebraic characteristics of reversible gates [J], Theory of Computing Systems, 2004,37(2) : 311 -319. 被引量:1
  • 8Yang G W, Song X Y, Perkowski M, et al. Fast synthesis of exact minimal reversible circuits using group theory [C]//Proceedings of IEEE ASP-DAC. Shanghai, China, 2005,2:18-21. 被引量:1

二级参考文献15

  • 1Deutsch D. Quantum computational networks. Proc R Soc London A, 1989, 425: 73-90. 被引量:1
  • 2Simon D R. On the power of quantum computation. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science. Los Alamitos: IEEE Computer Society Press, 1994. 116-123. 被引量:1
  • 3Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science. Los Alamitos: IEEE Computer Society Press, 1994. 124-134. 被引量:1
  • 4Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal of Computing, 1997, 26(5): 1484-1509. 被引量:1
  • 5Shor P W. Scheme for reducing decoherence in quantum computer memory. Phys Rev A, 1995, 52(4): R2493. 被引量:1
  • 6Shor P W. Fault-tolerant quantum computation. In: Proceedings of 37th Annual Symposium on Foundations of computer Science. Los Alamitos: IEEE Computer Society Press, 1996. 56-65. 被引量:1
  • 7Yao A. Quantum circuit complexity. In: Proceedings of 34th Annual Symposium on Foundations of computer Science. Los Alamitos: IEEE Computer Society Press, 1993. 352-361. 被引量:1
  • 8Fijany A, Williams C P. Quantum wavelet transforms: Fast algorithms and complete circuits. First NASA International Conference, Quantum Computing and Quantum Communications, 1998. 10-33. 被引量:1
  • 9Klappenecker A. Wavelets and Wavelet Packets on Quantum Computers. In: Unser M A, Aldroubi A, Laine A F, eds. Wavelet Applications in Signal and Image Processing Ⅶ, 1999. 703-713. 被引量:1
  • 10He Y G, Sun J G. Quantum search in structured database. The First International Conference on Natural Computation (ICNC 2005), 2005. 434-443. 被引量:1

共引文献4

同被引文献20

  • 1Deutsch D. Quantum theory, the church-turing principle and the universal quantum computer [ C]//Proceedings of the Royal Society. London, 1985,400 ( 1818 ) : 97 - 117. 被引量:1
  • 2Shende V V, Prasad A K, Markov I L, et al. Reversible logic circuit synthesis [ C ]//Proceedings of the International Conference on Computer-Aided Design. San Jose, CA,USA,2002 : 125 - 132. 被引量:1
  • 3Maslov D, Dueck G W, Miller D M. Toffoli network synthesis with templates [ J ]. IEEE Trans on Computer- Aided Design of Integrated Circuits and Systems, 2005,24(6) :807-817. 被引量:1
  • 4Shende V V, Prasad A K,Markov I L, et al. Synthesis of reversible logic circuits [ J ]. IEEE Trans on Computer- Aided Design of Integrated Circuits and Systems, 2003, 22(6) :723 -729. 被引量:1
  • 5Song X Y, Yang G W, Perkowski M, et al. Algebraic characteristics of reversible gates [ J ]. Theory of Computing Systems, 2004,37 ( 2 ) : 311 - 319. 被引量:1
  • 6Yang G W, Song X Y, Hung W N N, et al. Group theory based synthesis of binary reversible circuits [C ]//Proceedings of the 3rd International Conference on Theory and Applications of Models of Computation. Beijing, China,2006:365 - 374. 被引量:1
  • 7Miller D M, Maslov D, Dueck G W. A transformation based algorithm for reversible logic synthesis[C ]//Proceedings of the 40th Design Automation Conference. Anaheim ,CA,USA ,2003:318 - 323. 被引量:1
  • 8Li W Q, Wang J J, Chen H W, et al. Application of template technique in optimizing quantum logical circuit [ C ]//Proceedings of the 11 th International Conference on CSCWD. Melbourne, Australia, 2007 : 155 - 161. 被引量:1
  • 9Iwama K, Kambayashi Y, Yamashita S. Transformation rules for designing CNOT-based quantum circuits [ C ]//Proceedings of Design Automation Conference. New Orleans,LA,USA,2002,28(4) :419-425. 被引量:1
  • 10Toffoli T.Reversible computing:automata,languages and programming[M].New York:Springer,1980:632-644. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部