期刊文献+

一种基于小波谱的分形函数奇异性确定方法

Method for Determining Singularity of Fractal Function Based on Wavelet Spectrum
下载PDF
导出
摘要 基于最大重叠离散小波谱的定义,本文提出了一种确定分形信号局部奇异性指数的算法,构造了一种类似于奇异性谱的直方图,并用之来描述信号奇异性的全局统计分布.算法的有效性通过数字试验及在真实心率数据中的应用得到了验证. Based on the definition of wavelet spectrum of the maximal overlap discrete wavelet transform, we propose a novel algorithm for determining the local singularity exponents, which provides the local scaling information of interest,and construct a singularity-spectrum-like histogram to describe the global statistical distn'bution of the local singularity strengths. The validity and efficiency are verified by numerical experiment and application to real heart rate data.
出处 《电子学报》 EI CAS CSCD 北大核心 2008年第3期482-485,共4页 Acta Electronica Sinica
关键词 奇异性谱 局部HSlder指数 小波变换 singularity spectrum local holder exponents wavelet transform
  • 相关文献

参考文献8

  • 1MUZY J F,BACRY E, ARNEODO A. Wavelets and multifractal formalism for singular signals: application to turbulence data [J]. Physical Review Letters, 1991,67(25) :3515 - 3518. 被引量:1
  • 2GROSSMANN A, MORLET J. Decomposition of hardy functions into square integrable wavelets of constant shape [ J ]. SIAM Journal on Mathematical Analysis, 1984,15(4):723 -736. 被引量:1
  • 3PERCIVAL D B, WALDEN A T. Wavelet Methods for Time Series Analysis [ M ]. Cambridge: Cambridge university press, 2000. 159 - 205. 被引量:1
  • 4LEVY VEHEL J. Signal enhancement based on Holder regularity analysis[J]. The IMA Volumes in Mathematics and Its Applications, 2002,132: 197 - 209. 被引量:1
  • 5DAUBECHIES I, LAGARIAS J C. Two-scale difference equations ii:Local regularity,infinite products of matrices and fractals[J]. SIAM Journal on Mathematical Analysis, 1992,23(4) : 1031 - 1079. 被引量:1
  • 6http://www. physionet. org/physiobank/database/. 被引量:1
  • 7IVANOV P Ch, ROSENBLUM M G, et al. Multifractality in human heart-beat dynamics[ J ]. Nature, 1999,399: 461 - 465. 被引量:1
  • 8MAKOWIEC D, DUDKOWSKA A. Scale invariant properties in heart rate signals [ J ]. ACTA Physica Polonica B, 2006,37 (5) : 1627 - 1639. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部