期刊文献+

SVD-Unscented卡尔曼滤波的非线性结构系统识别 被引量:9

SVD-Unscented Kalman Filter for Nonlinear Structural System Identification
下载PDF
导出
摘要 提出一种基于奇异值分解的unscented卡尔曼滤波(SVD-UKF)非线性滞回结构系统识别方法。SVD-UKF可被看成改进的unscented卡尔曼滤波(UKF)方法,相对UKF而言,SVD-UKF具有更好的鲁棒性和灵活性。此方法不仅避免象扩展卡尔曼滤波(EKF)为了计算Jacobians矩阵的所需的导数运算,并且可以克服常规UKF方法在计算协方差时经常遇到的病态条件的缺点。对非线性系统参数的识别和突然变化的识别的数值模拟结果显示了所提出方法的鲁棒性和灵活性。 A singular value decomposition based on derivative-free Kalman filter (SVD-UKF) method for the identification of nonlinear hysteretic structural systems is put forward, which considered as a improved algorithm of unscented Kalman filter (UKF), with improvements in robustness and flexibility over the UKF techniques. This method enables to avoid the derivation of Jacobians for Extended Kalman filter (EKF), and overcome the drawbacks of the UKF method often encountering ill-conditioned problems in covariance calculation. The simulation results for identifying the parameters and the abrupt changes of a nonlinear system demonstrate the robustness and flexibility of the proposed methodology.
机构地区 同济大学 北京大学
出处 《应用力学学报》 EI CAS CSCD 北大核心 2008年第1期57-61,181,共5页 Chinese Journal of Applied Mechanics
基金 国家“十一五”科技支撑计划项目(2006BAJ13B03-4)
关键词 SVD Unscented卡尔曼滤波器 卡尔曼滤波器 非线性 系统辨识 SVD, unscented kalman filter, kalman filter, nonlinear, system identification.
  • 相关文献

参考文献15

  • 1Lin J W, Betti R, Smyth A W, et al. Online identification of nonlinear hysteretic structural systems using a variable trace approach[J]. Earthquake Engineering and Structural Dynamics, 2001, 30: 1279-1303. 被引量:1
  • 2Smyth A W, Masri S F, Chassiakos A G, et al. Online parametric identification of MDOF nonlinear hysteretic systems [J]. ASCEJ Engrg Mech, 1999, 125(2): 133-142. 被引量:1
  • 3Hoshiya M, Saito E. Structural identification by extended kalman filter[J]. Journal of Engineering and Mechanics, 1984, 110(12):1756-1772. 被引量:1
  • 4Takimoto M, Hoshiya M. Identification of nonlinear structures by the Kalman filter[J]. Journal of Structural Mechanics and Earthquake Engineering, 1997, 38: 179-187. 被引量:1
  • 5Sato T, Takei K. Real time robust algorithm for structural system with time-varying dynamic characteristics[C]. Proc Of SPIEls Symposium on Smart Structures and Materials. San Diego, California, USA, 1997: 393-404. 被引量:1
  • 6Sato T, Qi K. Adaptive H∞ filter:its application to structural identification[J]. J Engineering Mechanics, 1998, 124 (11) : 1233-1240. 被引量:1
  • 7Tang H, Sato T. Structural damage detection using the neural network and H∞ algorithm [C]. Health Monitoring and Smart Nondestructive Evaluation of Structural and Biological Systems III, Proceedings of SPIE 2004, 5394:454-463. 被引量:1
  • 8Sato T, Kaji K. Adaptive monte carlo filter and structural identification[C].Proceedings of International Conference on Monte Carlo Simulation. Monaco, 2000, 441-447. 被引量:1
  • 9Julier S J, Uhlmann J K. A new extension of the kalman filter to nonlinear systems[C].Proc of AeroSense: The llth Int. Syrup on Aerospace/Defence Sensing, Simulation and Controls. Orlando, Florida, 1997. 被引量:1
  • 10Erie A W, Rudolph van der M, Alex T N. Dual estimation and the unscented transformation[M]. MIT Press. 被引量:1

同被引文献73

引证文献9

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部