期刊文献+

一类广义集值拟向量变分不等式解的存在性

Existence of Solutions for a New Generalized Set-valued Quasi-variational Inequality Problem
下载PDF
导出
摘要 研究了Banach空间中一类G-可导映射的广义拟向量变分不等式问题,运用KKM定理证明这类问题解的存在性,并在适当的条件下证明了此类问题与Konnov I V和Yao J C等人提出的广义向量变分不等式问题是等价的. This paper discusses a new generalized Quasi-vector variational irtequality problem of Gateaux differential mappings in Banach space and proves the existence of a solution for such a problem by the KKM theorem. It indicates that this problem is equal to the generalized vector variational inequality problem which raised by Konnov I V and Yao J C in suitable condition.
出处 《温州大学学报(自然科学版)》 2008年第2期8-13,共6页 Journal of Wenzhou University(Natural Science Edition)
关键词 拟向量变分不等式 KKM映射 η-P-凸映射 Quasi-vector variational inequality KKM mapping η-P-convex mapping
  • 相关文献

参考文献8

  • 1[1]Cottle R W,Giannessi F,Lions J L,et al.Variational inequality and Complementary problems[C]//Giannessi F.Theorems of alterative,quadratic programs and complementary problems.New York:John Wiley,1980:151-186. 被引量:1
  • 2[2]Chen G Y.Existence of solutions for a vector variational inequality:An extension of the Hartmarnn-Stampaccchia Theorem[J].J Optim Theory Appl,1992,74:445-456. 被引量:1
  • 3[3]Yu S J,Yao J C.On vector variational inequalities[J].J Optim Theory Appl,1996,89:749-769. 被引量:1
  • 4[4]Lin K L,Yang D P,Yao J C.Generalized vector variational inequalities[J].J optim Theory Appl,1997,92:117-125. 被引量:1
  • 5[5]Konnov I.V,Yao J C.On the Generalized Vector Variational Inequality Problem[J].J Math Anal Appl,1997,206,42-58. 被引量:1
  • 6[6]Isreal A B,Mond B.What is invexity?[J].J Austral Math Soc:Series B,1986,28:1-9. 被引量:1
  • 7[7]Fu J Y.Generalized Vector Quasi-equilibium Problems[J].Math Methods Oper Res,2000,52:57-64. 被引量:1
  • 8[8]Chen G Y,Craven B D.A vector variational inequality and optimization over an efficient set[J].Zeitschriftfur Oper Res,1990,3:1-12. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部