期刊文献+

基于可见/近红外光谱的水稻品种快速鉴别研究 被引量:38

Discrimination of Varieties of Paddy Based on Vis/NIR Spectroscopy Combined with Chemometrics
下载PDF
导出
摘要 提出了一种应用可见/近红外光谱技术与化学计量学相结合的快速、无损鉴别稻谷品种的新方法。收集了5个品种水稻共150个样本作为实验样本,通过可见/近红外光谱仪扫描这些样本获得了从350nm到1075nm波长范围的光谱信息。将样本的光谱信息进行小波分解以消除高频噪声。将去噪声后的光谱数据经主成分分析压缩成数目较少的新变量(主成分),压缩得到的前4个主成分能够解释99·891%的原始光谱信息。将前4个主成分作为BP神经网络的输入,不同水稻品种值的二进制代码值作为BP神经网络的输出,建立稻谷品种的模式识别模型。模型的预测误差阈值是0·2,模型是3层网络结构,各层的节点分别是4,9和3。150个样本被随机的分成包含100个样本的建模集和50个样本的预测集。结果表明,预测未知的50个样本的正确率达到96%。说明该方法具有较高的鉴别准确度,为稻谷品种的快速无损鉴别提供了一种新的方法。 A simple,fast and non-destructive method based on visible/near infrared reflectance(Vis/NIR) spectroscopy and chemometrics was put forward for discriminating varieties of paddy.Firstly,A field spectroradiometer was used for collecting spectra in the wavelength range from 325 to 1 025 nm.The Vis/NIR spectra were acquired from 150 samples of five varieties of paddy.Secondly,original spectral data were decomposed as low-frequency wavelet coefficients and high-frequency wavelet coefficients by wavelet transform(WT) at first level.High-frequency wavelet coefficients were deleted as they contained too many noise,so the reconstructed signals from low-frequency wavelet coefficients were used as replacer of original spectral data.Thirdly,principal component analysis(PCA) compressed the above data into several new variables that were the linear combination of original spectral variables.The analysis suggested that the first four PCs(principle components) could account for 99.89% of the original spectral information,it means that the four PCs could explain most variation of original variables.In order to set up the model for discriminating varieties of paddy,the four diagnostic PCs were applied as inputs of back propagation artificial neural network(BP-ANN),and the values of varieties of different paddy were applied as the outputs of BP-ANN.The threshold of error was set as 0.2,the optimal structure of BP-ANN was three layers with nodes as 4-9-3.The whole 150 samples were randomly divided into two parts,one of which that consisted of 100 samples was used to model,and the other one containing 50 samples was used to predict.This model has been used to predict the varieties of 50 unknown samples,and the discrimination rate 96% has been obtained.It proved that the model was very reliable and practicable.In short,it is feasible to discriminate varieties of paddy based on visible/near infrared reflectance(Vis/NIR) spectroscopy and chemometrics.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2008年第3期578-581,共4页 Spectroscopy and Spectral Analysis
基金 国家科技支撑项目(2006BAD10A09) 国家自然科学基金项目(30671213) "863"项目(2007AA102210)资助
关键词 可见/近红外光谱 化学计量学 稻谷 品种鉴别 无损 Vis/NIR spectroscopy Chemometrics Paddy Discrimination Nondestructive
  • 相关文献

参考文献16

二级参考文献16

  • 1许禄.化学计量学方法[M].北京:科学出版社,1997.101. 被引量:26
  • 2伯晓晨 李涛 等.Matlab工具箱应用指南[M].北京:电子工业出版社,2000.. 被引量:17
  • 3StephaneMallat著.信号处理的小波导引[M].北京:机械工业出版社,2002.. 被引量:13
  • 4BAOYi-dan WUYan-ping HEYong(鲍一丹 吴燕平 何勇).农机化研究,2004,(3):162-162. 被引量:1
  • 5QIXiao-ming ZHANGLu-da DUXiao-lin etal(齐小明 张录达 杜晓林 ).光谱学与光谱分析,2003,23(5):870-870. 被引量:3
  • 6DAISuxian XIEChi-jun CHENDong etal(戴素贤 谢赤军 陈栋 ).华南农业大学学报,1999,20(1):113-113. 被引量:1
  • 7FUXia-ping YINGYi-bin LIUYan-de(傅霞萍 应义斌 刘燕德).农机化研究,2004,(2):201-201. 被引量:1
  • 8SUNSu-qin TANGJun-ming YUANZi-min etal(孙素琴 汤俊明 袁子民 ).光谱学与光谱分析,2003,23(2):258-258. 被引量:3
  • 9YUWei YONGKe-lan(俞蔚 雍克岚).食品科学,2003,24(11):105-105. 被引量:1
  • 10WANGSi-hong YINQi-fan FANYan-ling etal(王思宏 尹起范 范艳玲 ).光谱学与光谱分析,2004,24(8):957-957. 被引量:1

共引文献214

同被引文献678

引证文献38

二级引证文献418

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部