期刊文献+

两类平面图的关联色数 被引量:2

Incidence Coloring Numbers of Two Classes of Planar Graphs
下载PDF
导出
摘要 轮Wr+1(r≥3)是一个r阶圈加上一个新的顶点,再把圈上每个顶点与新顶点连上边所得到的图.新顶点与圈上顶点之间的边称为辐边,圈上的边称为边缘边.所谓花图Fr,m,n(r≥3,m≥1,n≥2m+1),是在轮Wr+1中的在每条辐边上分别嵌入m-1个新点,在每条边缘边上分别嵌入n-2m-1个新点所得到的图.所谓棱柱Qn(n≥3),是指Qn=(V,E),V={u1,u2,…,un}∪{v1,v2,…,vn},E={uiui+1,vivi+1,uivi,uivi+1|i=1,2,…,n},其中un+1=u1,vn+1=v1.通过给出花图Fr,m,n(r≥3,m≥1,n≥2m+1)和棱柱Qn(n≥3)的一种关联着色方法,确定了它们的关联色数. A wheel Wr+1(r≥3) is a graph obtained from a cycle of order r by adding a new vertex and joining the new vertex to all the vertices on the cycle. The new edges between the new vertex and the vertices on the cycle are called spoke edges, the edges on the cycle are called rim edges. A flower graph Fr (r≥3, m≥1, n≥2m + 1) is a graph obtained from Wr+1 by inserting m - 1 new vertices in every spoke edge and n - 2 m - 1 new vertices in every rim edge. The planar graph Qn ( n≥3) called a prism is defined by Q. = G( V, E), V = { u1,u2, …, un } ∪ { v1, v2, …, vn } and E = {uiui+l, vivi+1, uivi, uivi+1|i=l,2,…,n}, where un+1=u1,vn+l=v1. Based onincidence coloring methods of Fr,m,n( r≥3, m≥1, n≥2 m + 1) and Qn( n≥3), the incidence coloring numbers of them are determined.
作者 张丽 陈东灵
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第3期392-396,共5页 Journal of Tongji University:Natural Science
关键词 关联色数 关联着色 花图 棱柱 incidence coloring number incidence coloring flower graph prism
  • 相关文献

参考文献5

  • 1Brualdi R A, Massey J J Q. Incidence and strong edge colorings of graphs[J]. Discrete Math, 1993, (122):51. 被引量:1
  • 2Gruiduli B. On incidence coloring and star arboricity of graphs [ J ]. Discrete Math, 1997, (163) : 275. 被引量:1
  • 3Algor I, Alon N. The star arboricity of graphs [J]. Discrete Math, 1989, (75) : 11. 被引量:1
  • 4陈东灵,刘西奎,王淑栋.图的关联色数和关联着色猜想[J].经济数学,1998,15(3):47-51. 被引量:29
  • 5WANG Shudong, CHEN Dongling, PANG Shanchen. The incidence coloring number of Halin graphs and outerplanar graphs [J]. Discrete Math, 2002, (256): 397. 被引量:1

共引文献28

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部