期刊文献+

基于多种修正方式的概率松弛匹配算法

Probabilistic relaxation matching algorithm based on multi-revisory method
下载PDF
导出
摘要 文章提出了一种将谱图理论、特征点的灰度特征及空间特征和概率松弛法相结合的特征点匹配算法;首先通过谱方法求出特征点匹配的初始概率,然后利用特征点的灰度相关性及形状上下文关系来修正初始概率,再利用特征点的形状上下文关系作为初始支持度,最后将修正过的初始概率、初始支持度与概率松弛迭代法相结合,获得匹配结果;实验结果表明,该方法能够达到很高的匹配效果。 A novel algorithm for point correspondence is proposed, which combines graph spectral analysis and partial characteristics of the point together via the method of probabilistic relaxation. Firstly, the initial correspondence probabilities are obtained by means of spectral analysis. Secondly, partial characteristics are employed to compute the initial support. Finally, by combining the intial probability and support with the probabilistic relaxation, the correspondence results are gained. The experimental results demonstrate that this approach can achieve comparatively high accuracy.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第3期462-464,共3页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(60772121)
关键词 匹配 形状上下文 概率松弛 correspondence shape context probabilistic relaxation
  • 相关文献

参考文献8

  • 1Chui H,Rangarajan A. A new point matching algorithm for non-rigid registration[J]. Computer Vision and Image Understanding, 2003,89 (2) : 114-141. 被引量:1
  • 2Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts [J]. IEEE Trans Pattern Anal Machine Intell, 2002,24 (4) : 509-522. 被引量:1
  • 3Soctt G L,Longuet-Higgins H C. An algorithm for associating the features of two images [J]. Proceedings of Royal Society of London, 1991,224 : 21-26. 被引量:1
  • 4Shapiro L S, Brady J M. Feature-based correspondence: an eigenvector approach [J]. Image and Vision Computing, 1992,10(5) :283-288. 被引量:1
  • 5Belongie S, Malik J, Puzicha J. Matching shapes[C]//Proc Eighth Int'l Conf Computer Vision,2001:454--461. 被引量:1
  • 6桑农,张天序.旋转与比例不变的点特征松弛匹配算法[J].电子学报,1998,26(6):74-77. 被引量:14
  • 7王年,范益政,韦穗,梁栋.基于图的Laplace谱的特征匹配[J].中国图象图形学报,2006,11(3):332-336. 被引量:32
  • 8Carcassoni M, Hancock E R.Spectral correspondence for point pattern matching [J]. Pattern Recognition, 2003, 36 : 193-- 204. 被引量:1

二级参考文献17

  • 1桑农,张天序,魏洛刚,汪国有.松弛匹配算法的神经网络实现[J].通信学报,1996,17(2):46-52. 被引量:3
  • 2桑农,Proc SPIE 2664,1996年,182页 被引量:1
  • 3His J L,Pattern Recognit,1990年,23卷,1/2期,81页 被引量:1
  • 4Cvetkovié D,Doob M,Sachs H.Spectra of graphs:Theory and application[M].Berlin:Academic Press,1982. 被引量:1
  • 5Chung F R K.Spectral graph theory[M].Providance,Rhode Island USA:American Mathematical Society,1997. 被引量:1
  • 6Umeyama S.An eigen decomposition approach to weighted graph matching problems[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1988,10(5):695 ~ 703. 被引量:1
  • 7Scott G L,Longuet-Higgins H C.An algorithm for associating the features of two images[J].Proceedings of Royal Society of London,1991,B-244:21 ~26. 被引量:1
  • 8Shapiro L S,Brady J M.Feature-based correspondence-An eigenvector approach[J].Image Vision Comput,1992,10 (5):283 ~288. 被引量:1
  • 9Carcassoni Marco,Hancock Edwin R.Spectral correspondence for point pattern matching[J].Pattern Recognition,2003,36 (1):193 ~ 204. 被引量:1
  • 10Carcassoni Marco,Hancock Edwin R.Correspondence matching with modal clusters[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(12):1609 ~ 1615. 被引量:1

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部