期刊文献+

关于H矩阵的Minkowski型不等式的修正及推广 被引量:1

Modify and Generalization on Minkowski Inequality of H-Matrix
下载PDF
导出
摘要 通过举例,指出了给定的Minkowski型不等式的两处错误,并从理论上分析了该错误产生的原因。在此基础上,结合H矩阵的特点,运用特征值分布、不等式运算等方法,补充了结论成立的必要条件,修正了H矩阵的该Minkowski型不等式的不足之处,并将结论加以推广;其次,通过进一步的分析,对H矩阵的另一个不等式作了推广。这种对原有结论的修正和推广,不仅丰富和充实了H矩阵理论本身,对生物学、计算数学等相关领域内容的发展也奠定了理论基础。 First, two mistakes about the Minkowski inequality of H--matrix were pointed by practical examples and reason of the mistakes was found on a view of theory analysis. On the base, some necessary conditions were improved and Minkowski inequality was further modified by considering H--matrix properties, using eigenvalues' distribution, inequality's calculation and other methods,and the corresponding results were generalized. Second, another important inequality of H--matrix was also generalized by the analysis of the Minkowski inequality. The modify and generalization not only offer supports to the H-- matrix theory itself, but also do good to development of biology, computers and mathematics and other related fields.
作者 李阳
出处 《辽宁石油化工大学学报》 CAS 2008年第1期81-85,共5页 Journal of Liaoning Petrochemical University
基金 辽宁省教育厅高校科研项目(2004F100)
关键词 H矩阵 特征值 不等式 H--matrix Eigenvalues Inequality
  • 相关文献

参考文献9

二级参考文献33

共引文献20

同被引文献11

  • 1冯志鑫,李阳,宋岱才.F型广义Z-矩阵与M-矩阵的几个性质[J].辽宁石油化工大学学报,2005,25(2):92-94. 被引量:2
  • 2雷刚,王慧勤.一类新预条件下AOR迭代法收敛性的讨论[J].安徽大学学报(自然科学版),2007,31(3):1-4. 被引量:4
  • 3宋永忠.线性方程组的迭代解法[M].南京:南京师范大学出版社,1992:38—54. 被引量:2
  • 4Morimoto M, Kotakemori H, Kohno T, et al. The Gauss-Seidel iteration with preconditioner (I+R) [J]. Indust. appl. math., 2003 (13):439-445. 被引量:1
  • 5Hiroshi Niki, kyouji Harada, Munenori Morimoto, et al. The survey of preconditioners used for accelerating the rate of convergence in the Gauss-Seidel method [J] . Journal of computational and applied mathematics, 2004, 165 (5):587- 600. 被引量:1
  • 6Varga R S. Matric Iterative Analysis[M]. Berlin: Prentice Hall Inc. 1962. 被引量:1
  • 7ELSNER L. Comparisons of weak regular splittings and multisplitting methods[J]. Numer math. , 1989,56:283-289. 被引量:1
  • 8Berman A, Plemmons R J. Nomnegative matrices in the mathematical science[M]. SIAM, Philadeplphia: PA, 1994. 被引量:1
  • 9Krisbna L B. Some new results on USSOR method[J]. Numer. math. ,1983,(42) :155-160. 被引量:1
  • 10陈景良,陈向晖.特殊矩阵[M].北京:清华大学出版社,2000.130. 被引量:72

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部