摘要
文章引入并研究了Banach空间E中的一类新的广义集值混合变分包含问题:求u∈E,t∈J(u),w∈T(u),x∈F(u),y∈V(u),z∈G(u),v∈P(u),满足θ∈g(t)+N(w,x,y)+A(z,v),其中J,T,F,V,G,P均为集值映射.利用集值m-增生映射的预解算子,N adler定理和构造辅助序列建立了该问题解的迭代算法,证明了该问题解的存在性以及算法的全局强收敛性。
A new class of generalized multi-valued mixed variational inclusion in Banach spaces is introduced and studied: Find u∈E,t∈J(u),w∈T(u),x∈F(u),y∈V(u),z∈G(u),v∈P(u) such thatθ∈g(t)+N(w,x,y)+A(z,v), J, T, F, V, G, P are multi-valued mappings. Relying on the resolvent operator method and using Nadler's theorem, the existence theorem of solutions and auxiliary sequential, some algorithms of the problem are established, and the globally and strongly convergence of the iterative solutions are also proved.
出处
《淮北煤炭师范学院学报(自然科学版)》
2008年第1期1-5,共5页
Journal of Huaibei Coal Industry Teachers College(Natural Science edition)
基金
安徽省教育厅自然科学研究项目(2006KJ051C)
安徽省高校青年教师科研资助计划项目(2005JQ1132)
关键词
广义集值混合变分包含
m-增生映射
预解算子
全局收敛
generalized multi-valued variational inclusions
m-accretive mapping
resolvent operator
global convergence