期刊文献+

概率论中几个不等式的推广及应用

The Generalizations and Applications of Several Inequalities in Probabilistic Theory
下载PDF
导出
摘要 Markov不等式和Chebyshev不等式是概率论中两个重要的不等式。从这两个不等式和中心极限定理出发,利用指数函数y=esx,s>0的单调增加和凹性得到了几个新的不等式。并对服从两点分布的独立随机变量X1,X2,…,Xn进行研究,首先利用Chebyshev不等式得到随机变量Sn=∑ni=1Xi偏离方差ESn的上界p(1-p)/nε2,但它只有O〔1/n〕阶的收敛速度,然后利用新的不等式得到一个新的上界e-2nε2,它有更快的收敛速度,这在探讨收敛速度时有着重要的理论意义。 Markov's inequality and Chebyshev's inequality are very important in probabilistic theory. From the two inequalities and the central limit theorem, some new inequalities are derived by using the properties of monotonous increase and concave of the function, y=e^sx, s〉O, Assume that Xl ,X2 ,…… ,Xn, are independent identically distributed (i. i. d. ) Bernoulli(p) random variables. First, we can get the upper bound p(1-p)/nε^2 with order O(1/n) from Chebyshev inequality. Second, a better upper bound e^-2m^2 was gotten with the new inequalities, which can fasten the convergence rate.
作者 游煦
出处 《北京石油化工学院学报》 2008年第1期54-56,共3页 Journal of Beijing Institute of Petrochemical Technology
关键词 Markov不等式 CHEBYSHEV不等式 中心极限定理 收敛速度 两点分布 markov's inequality chebyshev's inequality central limited theorem convergence rates bernoulli distribution
  • 相关文献

参考文献5

  • 1[1]Cucber F,Smile S.On the mathematical foundations of learning[J].Bulletin of the American Mathematical Society,2001,39:1-49. 被引量:1
  • 2[2]Devroye L,Gyorfi L,Lugosi G.A probability theory of pattern recognition[M].New York:Springer-Verlag,1996. 被引量:1
  • 3Di Rong CHEN Xu YOU.Minimax Optimal Rates of Convergence for Multicategory Classifications[J].Acta Mathematica Sinica,English Series,2007,23(8):1419-1426. 被引量:4
  • 4[4]Yang Y H.Minimax nonparametric classification-part Ⅰ:rates of convergence[J].IEEE Transaction on Information Theory,1999,7:2271-2284. 被引量:1
  • 5[5]Yuan P Zh,Chen H B.Two inequalities for convex functions[J].Acta Mathematica Siniea,2004,21(1):193-196. 被引量:1

二级参考文献12

  • 1Devroye, L., Gyorfi, L., Lugosi, G.: A probability theory of pattern recognition, Springer Verlag, New York, 1996. 被引量:1
  • 2Vapnik, V.: Statistical learning theory, Wiley, New York, 1998. 被引量:1
  • 3Lee, Y., Lin, Y., Wahba, G.: Multicategory support vector machines, theory, and application to the classification of microarray data and satellite radiance data. Journal of American Statistical Association, 2002. 被引量:1
  • 4Chen, D. R., Xiang, D. H.: The consistency of multicategory support vector machines. Adv. in Comput. Math., 24, 155-169 (2006). 被引量:1
  • 5Wu, Q., Zhou, D. X.: Analysis of support vector machine classification, submitted, 2003. 被引量:1
  • 6Chen, D. R., Wu, Q., Ying, Y., Zhou, D. X.: Support vector machine soft margin classifier: error analysis. J. Machine Learning Research, 5, 1143-1175 (2004). 被引量:1
  • 7Antos, A.: Performance limits of nonparametric estimators, Ph D thesis, University of Budapest, 1999. 被引量:1
  • 8Antos, A., Kegl, B., Linder, T., Lugosi, G.: Data-dependent margin-based generalization bounds for classification. Journal of Machine Learning Research, 3, 73-98 (2002). 被引量:1
  • 9Yang, Y. H.: Minimax nonparametric classification-part Ⅰ: rates of convergence. IEEE Transaction on Information Theory, 7, 2271-2284 (1999). 被引量:1
  • 10Yang, Y. H.: Minimax nonparametric classification-part Ⅱ: model selection for adaptation. IEEE Transaction on Information Theory, 7, 2285-2292 (1999). 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部