摘要
从代数的观点、拓扑的观点来讨论和研究粗糙集是粗糙集理论研究的主导思想之一.近年来,国内外学者对粗糙群、粗糙子群、粗糙半群、子群的粗糙理想做了大量的研究,并得到了很好的结论.运用粗糙集理论的思想,在已有的粗糙群的概念的基础上,更深入地探讨了粗糙集理论在代数系统——群上的应用,给出粗糙子群、粗糙陪集、粗糙不变子群和粗糙商群的概念,并讨论了一些新的性质.
It is an offshoot to study rough sets from algebraic and topologic opinions. In recent years, scholars have made a lot of research on rough group, rough subgroup, rough semigroup and rough ideas of subgroup with many conclusions reached. The application of rough sets theory into algebra system--groups is discussed in this paper using the idea of rough sets. Rough subgroups, rough invariant subgroups and rough quotient groups are introduced based on the concept of rough groups. Their properties are introduced, and the rigorous proof is given.
出处
《淮海工学院学报(自然科学版)》
CAS
2008年第1期5-8,共4页
Journal of Huaihai Institute of Technology:Natural Sciences Edition
基金
教育部科学技术研究重点资助项目(206089)
关键词
粗糙群
粗糙子群
粗糙不变子群
粗糙商群
rough groups
rough subgroups
rough invariant subgroups
rough quotient groups