期刊文献+

改进微粒群算法在光子晶体优化中的应用 被引量:1

Improved Particle Swarm Optimization and Its Application in Photonic Crystal
下载PDF
导出
摘要 针对标准微粒群算法无法合理控制全局搜索和局部开发之间的关系,容易出现早熟收敛和全局收敛放慢的现象,提出了一种基于吸引力排斥力平衡机制的改进微粒群算法。改进算法将优化过程分为三个阶段,设定了每个阶段的目标,以此为指导来分别调整引力斥力大小和极优值传播速度,有重点地进行全局搜索或局部开发,以达到提高优化效率的目的。采用四个典型测试函数对改进算法进行了测试,并将该算法应用在光子晶体带隙优化设计中,实验结果表明,改进微粒群算法很好地避免了早熟收敛和全局收敛放慢的现象,相比标准算法具有较高的可靠性和稳定性,是一种高效的优化算法。 In order to balance the relationship of globe exploration and local exploitation efficiently, and avoid the premature convergence and slowdown convergence phenomenon, the improved Particle Swarm Optimization ( IPSO), based on balance mechanism of attraction and repulsion, is proposed. Optimization process is divided into three stages and each stage has its own goals. The paper uses it as guidance to control the value of attraction and repulsion and propagation velocity of excellent value, and focuses on global search or local development in order to enhance the effi- ciency of algorithm. The experiment results of four benchmark function and application in photonic crystal optimiza- tion indicate that IPSO can well avoid the phenomenon of premature convergence and slowdown convergence, compared to PSO, so the IPSO is a highly reliable, stable and efficient algorithm.
出处 《计算机仿真》 CSCD 2008年第3期202-205,共4页 Computer Simulation
基金 陕西省自然科学基础研究计划(2006F15) 西北工业大学科技创新基金(2006CR11)
关键词 平衡机制 传播参数 多阶段 微粒群优化算法 Balance mechanism Spread parameter Multiple stages Particle swarm optimization
  • 相关文献

参考文献8

  • 1R C Eberhart, J Kennedy. Particle swarm optimization[ C ]. Neural Networks, 1995. Proceedings. IEEE International Conference on, Piscataway, NJ, 1995,4:1942-1948. 被引量:1
  • 2M Clere. The Swarm and the Queen: Toward a Deterministic and Adaptive Particle Swarm Optimization [ C], Proc. of the Congress on Evolutionary Computation, Washington, DC, 1999. 1951 - 1957 被引量:1
  • 3X H Hu, R C Eberhart. Adaptive particle swarm optimization: Detection and response to dynamic system [ C ]. In : Proc. of the IEEE Int'l Conf. on Evolutionary Computation. Honolulu, 2002. 1666 - 1670. 被引量:1
  • 4Y Shi, R C Eberhart. Fuzzy adaptive particle swarm optimization [ C ]. Proceedings of the Congress on Evolutionary Computation, Seoul, Korea, 2001. 231 -234. 被引量:1
  • 5J Kennedy. Small worlds and mega - minds: effects of neighborhood topology on particle swarm performance [ C ]. Proceedings of IEEE Congress on Evolutionary Computation, 1999. 1931 - 1938. 被引量:1
  • 6李炳宇,萧蕴诗,汪镭.一种求解高维复杂函数优化问题的混合粒子群优化算法[J].信息与控制,2004,33(1):27-30. 被引量:25
  • 7郑鹏,郭娟,杨为民.一种嵌入局部混沌搜索的混合微粒群优化算法[J].计算机仿真,2006,23(2):161-164. 被引量:7
  • 8Shi and Eberhart. Empirical study of particle swarm optimization [ C ]. Proceedings of the Congress on Evolutionary Computation. Indianapolis. 1999,3 : 101 - 106. 被引量:1

二级参考文献14

  • 1[1]Kennedy J,Eberhart R.Particle swarm optimization [ A ].Proceedings of the IEEE International Conference on Neural Networks[C].1995.1942~1948. 被引量:1
  • 2[2]Eberhart R,Kennedy J.A new optimizer using particle swarm theory [ A ].Proceedings of the 6th International Symposium on Micro Machine and Human Science [ C].1995.39~43. 被引量:1
  • 3[3]Reynolds C.Flocks,herds,and schools:a distributed behavioral model [ J].Computer Graphics,1987,21 (4):25~34. 被引量:1
  • 4[4]Nelder J A,Mead A.A simplex method for function minimization[J].Computer Journal,1965,7:308~313. 被引量:1
  • 5James Kennedy,Russell Eberhart.Particle swarm optimization [C].Proceeding of Neural Networks,1995.1942-1948. 被引量:1
  • 6K E Parsopoulos,M N Vrahatis.Recent approaches to global optimization problems through particle swarm optimization [J].Natural computing,2002,1:235-306. 被引量:1
  • 7Y Shi,R C Eberhart.Fuzzy adaptive particle swarm optimization[C].Proceedings of the Congress on Evolutionary Computation,Seoul,Korea,2001. 被引量:1
  • 8P Angeline.Using selection to improve particle swarm optimization [C],Proceedings of IJCNN,1999.84-89. 被引量:1
  • 9J Kennedy.Small worlds and mega-minds:effects of neighborhood topology on particle swarm performance [C].Proceedings of IEEE Congress on Evolutionary Computation,1999.1931-1938. 被引量:1
  • 10Xie Xiao-Feng,Zhang Wen-Jun,Yang Zhi-Lian.Adaptive particles swarm optimization on individual level [C].Int.Conf.On Signal Processing,Beijing,2002.1215-1218. 被引量:1

共引文献30

同被引文献5

引证文献1

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部