期刊文献+

用户需求行为对互联网动力学整体特性的影响 被引量:5

Influence of user requirement behaviors on internet collective dynamics
原文传递
导出
摘要 由Internet构成的复杂网络的动力学特性主要受到用户需求行为的影响,具备时域的统计规律性.通过对区域群体用户需求行为的时域实验统计分析,发现用户对Web网站的访问频度及其生成的二分网络的入度分布也呈现幂律分布和集聚现象,其幂指数介于1.7到1.8之间.建立了虚拟资源网络VRN和物理拓扑网络PTN双层模型,分析了双层模型映射机理,并对网络用户需求行为进行建模.虚拟资源网络VRN对物理拓扑网络PTN映射过程的不同机理,模拟了Internet资源网络到物理网络的不同影响模式.幂律分布的用户需求特性会引起物理网络性能参数相变的左移,通过将具有高幂律特征的小子集对物理拓扑网络进行分布式映射,其网络性能参数相变点明显右移,从而揭示了可以依靠高幂律小子集节点的分布式映射机理来改善Internet物理网络的性能. The complex network dynamics of the Internet ismainly influenced by user requirement behaviors, and can be statistic in time series. A large number of complex networks, both natural and artificial, share the presence of highly heterogeneous, scalefree degree distributions and small-world phenomena. This paper analyzed the empirical collective behavior of user requirements in a region, and discovered that the frequency and the in-degree distributions of bipartite networks constructed by user visiting web sites follows the power-law, and the exponent is between 1.7 and 1.8. A novel two-tier model, the virtual resource networks (VRN) and physics topology networks (PTN), is proposed to study the influences on the Interuet collective behaviors. The mapping process mechanisens of VRN to PTN simulates how the dynamic behaviors of resource network influence the interuet physics topology networks. The power-law characteristics of VRN can bring forth the result that the phase transition critical point moves left and network performance is more incapable. The distributed mapping process of VRN to PTN was constructed for the small subset with the high degree nodes, then the phase transition critical point of PTN moves right and the network performance is improved obviously.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2008年第3期1381-1388,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:60272014) 中国工程院信息学部2006年度咨询项目资助的课题~~
关键词 复杂网络 无标度拓扑 用户需求 相变 互联网 动力学整体特性 complex networks, scale-free topology, user requirements, phase transition
  • 相关文献

参考文献17

  • 1Strogatz S H 2001 Nature 410 268. 被引量:1
  • 2Albert R, Barabasi A L 2002 Reviews of Modern Physics 74 47. 被引量:1
  • 3Dorogovtsev S N, Mendes J F 2002 Adv. Phys. 51 1079. 被引量:1
  • 4Golsev A V, Forogovtsev S N, Mendes J F 2003 Phys. Rev. E 67 26123. 被引量:1
  • 5Watts D J, Strogatz S H 1998 Nature 393 440. 被引量:1
  • 6Yook S H, Jeong H, Barabasi A L 2002 PNAS 99 13382. 被引量:1
  • 7Govindan R, Tangmunarunkit H 2000 In Proceedings of IEEE INFOCOM 3 1371. 被引量:1
  • 8Faloutsos M, Faloutsos P, Faloutsos C 1999 Comput. Commun. Rev. 29 251. 被引量:1
  • 9Tadic B 2001 Physica A 293 273. 被引量:1
  • 10Adamic L A, Huberman B A 2000 Science 287 2115. 被引量:1

二级参考文献39

  • 1[1]Banavar J R, Marritan A and Rinaldo A 1999 Nature399 130 被引量:1
  • 2[2]Huberman B A and Lukose R M 1997 Science277 535 被引量:1
  • 3[3]Barabási A L, Albert R, Jeong H and Bianconi G 2000 Science287 2115a 被引量:1
  • 4[4]Willinger W, Taqqu M S, Sherman R and Wilson D V 1997 IEEE/ACM Trans . on Networking5 71 被引量:1
  • 5[5]Crovella M E, Bestavros A and Taqqu M S 1998 A Practical Guide to Hea vy Tails:Statistical Techniques and Applications(Boston Birkhuser) 3- 25 被引量:1
  • 6[6]Csabai I 1994 J.Phys. A 27 L417 被引量:1
  • 7[7]Takayasu M, Fukuda K and Takayasu H 1999 Physica A 274 140 被引量:1
  • 8[8]Leland W, Taqqu M, Willinger W and Wilson D 1994 IEEE/ACM Transaction s on Networking2 1 被引量:1
  • 9[9]Takayasu M, Takayasu H and Sato T 1996 Physica A 233 824 被引量:1
  • 10[10]Yuan J, Ren Y and Shan X 2000 Phys.Rev.E 61 1067 被引量:1

共引文献37

同被引文献46

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部