期刊文献+

火焰原子吸收光谱法测定甜菜块根中铜、锌含量 被引量:4

Determination of zinc and copper in beet root by flame atomic absorption spectrometry
下载PDF
导出
摘要 采用微波消解——火焰原子吸收光谱法,对编号为GBW07604杨树叶、GBW07601人发的质控样及10个甜菜块根样品进行重金属铜、锌的检测,并且对这两种金属元素的最低检出限、精确度、准确度及样品差异进行分析。结果表明,应用本方法测定的铜、锌的最低检出限分别为0.0056mg/kg、0.0298mg/kg;铜在甜菜块根中的含量较低,在浓度范围0-0.8μg/mL与其吸光度呈良好的线性关系,线性方程为y=0.14579x+0.0006,相关系数为0.9999。锌在浓度范围0-0.5μg/mL,与其吸光度也呈良好的线性关系,线性方程为Y=0.07157x+0.0002,相关系数为0.9997。实验表明,本方法及仪器条件适合甜菜样品中铜、锌的检测。 Copper and zinc in ten samples of beet root and quality control samples (No. GBW07604,GBW07601 ), were determined by microwave - digestion flame atomic absorption spectrometry. The linear range, MDL, accuracy and sample's diversity also analyszed.The results showed: at this test condition, the detection limit of copper was 0.0056 mg/kg and zinc was 0.0298 mg/kg, and copper was little in beet root. The results showed that the significant linear relations between copper and zinc concentration. The absorbency in the range of copper 0 - 0.8 μg/mL , it submit good linear relation with its absorbance, the linear equation is y = 0. 14579x + 0.0006, coefficient r = 0.9999, as well as the zinc density range in 0 -0.5 μg/mL, it also submit good linear relation with its absorbance, linear equation is y = 0.07157x + 0.0002, coefficient r = 0.9997.
出处 《中国甜菜糖业》 2008年第1期8-11,共4页 China Beet & Sugar
基金 黑龙江省教育厅资助项目(11511293)
关键词 微波消解 火焰原子吸收光谱法 甜菜块根 microwave digestion flame atomic absorption spectrometry beet root zinc copper
  • 相关文献

参考文献5

二级参考文献63

  • 1王宗元,王捍东,史德浩,吴维芬,James Mason.镉中毒解毒机理的研究——硒化合物的预防和治疗作用初探[J].畜牧兽医学报,1993,24(4):366-373. 被引量:12
  • 2林舜华,黄银晓,姚依群,韩荣庄.以植物、土壤元素含量评价天津大气环境质量[J].Acta Botanica Sinica,1989,31(1):57-65. 被引量:9
  • 3[4]Bell P F, Chaney R L, Angle J S, 1991. Free metal activity and total metal concentrations as indices of metal availability to barley (Hordeum vulgare cv `Klages'). Plant Soil, 130:51~62 被引量:1
  • 4[5]Bienfait H F, 1985. Regulated redox process at the plasmalemma of plant root cells and their function in iron uptake. J Bioenerg Biomembr, 17: 73~83 被引量:1
  • 5[6]Blaylock M J, Salt D E, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley B D, Raskin I, 1997. Enhanced accumulation of Pb in Indian Mustard by soil-applied chelating agents. Environ Sci Technol, 31:860~865 被引量:1
  • 6[7]Chaney R L, 1988. Metal speciation and interaction among elements affect trace element transfer in agricultural and environmental food-chains. In: Kramer J R, Allen H E eds. Metal speciation, theory, alalysis, and application. Chelsa, MI: Lewis Publishers, 219~260 被引量:1
  • 7[8]Cobbett C S, 2000. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol, 123: 825~832 被引量:1
  • 8[9]Cohen C K, Fox T C, Garvin D F, Kochian L V, 1998. The role of iron deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiol, 116: 1063~1072 被引量:1
  • 9[10]De Knecht J A, Koevoets P L M, Verkleij J A C, Ernst W H O, 1992. Evidence against a role for phytochelatins in naturally selected increased cadmium tolerance in Silene vulgaris (Moench) Garcke. New Phytol, 122:681~688 被引量:1
  • 10[11]Eide D, Broderius M, Fett J, Guerinot M L, 1996. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA, 93: 5624~5628 被引量:1

共引文献195

同被引文献53

引证文献4

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部