期刊文献+

基于贝叶斯正则化神经网络虚拟企业敏捷性评价 被引量:8

Agility evaluation of virtual enterprise based on BR neural network
下载PDF
导出
摘要 高敏捷性是虚拟企业适应不断变化的市场必备的素质,如何对它进行准确评价是虚拟企业运行中的重要问题,针对此问题先对虚拟企业及其盟员敏捷性之间的关系分析,然后提出在已知虚拟企业盟员敏捷性的基础上用贝叶斯正则化神经网络来计算虚拟企业的敏捷性,最后通过仿真试验测试了该方法的可行性。实验结果证明与非正则化神经网络相比,贝叶斯正则化神经网络的泛化能力强,评价数据结果稳定。该方法可用于各种规模的虚拟企业评价。 To study how to measure Agility of Virtual Enterprise(VE),the relationship between VE and its member is analyzed first.Based on it,a new method using Bayesian Regularization Neural Network(BRNN) for Agility Evaluation of Virtual Enterprise is developed.A simulative example illustrates the usefulness of the proposed method.In contrast to the non regularization neural net work,the result shows that BRNN overcomes the over-fitting problems,it can be used to measure any size of VE.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第8期223-225,235,共4页 Computer Engineering and Applications
基金 国家科技部高新技术计划项目( the National Ministry of Science and Technology High- Tech Foundation No.2005EJ000017) 河北省科技研究与发展计划( the Science Research and Develop Program of Hebei Province of China No.02547015D) 河北省普通高等学校博士科研基金( the Postdoctoral Research Program Foundation of Institutions of Higher Education of Hebei Province of ChinaNo.B2002118)
关键词 虚拟企业 盟员 敏捷性评价 神经网络 贝叶斯正则化 virtual enterprise member agile evaluation neural network Bayesian regularization
  • 相关文献

参考文献5

二级参考文献15

  • 1张申生.从CIMS走向动态联盟[J].中国机械工程,1996,7(3):17-22. 被引量:89
  • 2DoveR,张申生.敏捷企业(上)[J].中国机械工程,1996,7(3):22-27. 被引量:116
  • 3边肇祺.模式识别[M].清华大学出版社,1999.. 被引量:61
  • 4[1]许青松,范玉顺,陶丹.Research of an Agile Manufacturing Information System. Journal of Systems Engineering and Electronics,2000,11(3):22~27 被引量:1
  • 5[2]Richard D, Robert G, John J M.Agile Manufacturing research: Accom Plishments and Opportunities.IIE Transactions, 1997, 29(10):813~823 被引量:1
  • 6[3]Rick D.The Meaning of Life & The Meaning of Agile. Production, 1994, 106(11):5~14 被引量:1
  • 7[4]Rick D.Measuring Agility:The Tool of Turmoil.Production, 1995, 107(1):4~12 被引量:1
  • 8Reed R. IEEE Trans. Neural Networks, 1993, 5: 740- 747. 被引量:1
  • 9MacKay D J C.Neural Computation,1992,4:448-472. 被引量:1
  • 10Foresee F D,Hagan M T.IEEE Int Conf Neural Networks,1997,3:1930-1935. 被引量:1

共引文献32

同被引文献48

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部