期刊文献+

混合线性/非线性模型的准高斯Rao-Blackwellized粒子滤波法 被引量:7

Quasi-Gaussian Rao-Blackwellized Particle Filter for Mixed Linear/Nonlinear State Space Models
下载PDF
导出
摘要 针对混合线性/非线性模型,提出一种新的递推估计滤波算法,称为准高斯Rao-Blackwellized粒子滤波器(Q-GRBPF)。算法采用Rao-Blackwellized思想,将线性状态与非线性状态进行分离,对非线性状态运用准高斯粒子滤波(Q-GPF)算法进行估计,并将其后验分布近似为单个高斯分布,再利用非线性状态的估计值对线性状态进行卡尔曼滤波(KF)估计。将Q-GRBPF应用于目标跟踪的仿真结果表明,与Rao-Blackwellized粒子滤波器(RBPF)相比,Q-GRBPF在保证估计精度的前提下有效降低了计算复杂度,计算时间约为RBPF的58%;与Q-GPF相比,x坐标与y坐标的估计精度分别提升了45%和30%,而计算时间也节省了约30%。 A new recursive estimation algorithm, called the quasi-Gaussian Rao-Blackwellized particle filter (Q- GRBPF), is proposed for filtering mixed linear/nonlinear state space models. The algorithm utilizes the idea of Rao-Blackwellized to separate the linear and nonlinear states. For the nonlinear states, the posterior distribu- tions of the estimates, which are achieved by the quasi-Gaussian particle filter (Q-GPF), are approximated as Gaussian distributions. Also, the linear states are estimated by the Kalman filter(KF) with the estimated non- linear states. The simulation results of the proposed method applying to target tracking show that the proposed method only consumes 58% of the computing time required by the RBPF. Furthermore, compared with Q-GPF, the tracking accuracies of the proposed method for estimating x and y coordinate locations of the tracked target are respectively increased by 45% and 30% while 30% computing time is saved.
出处 《航空学报》 EI CAS CSCD 北大核心 2008年第2期450-455,共6页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(60572023)
关键词 信号处理 准高斯Rao-Blackwellized粒子滤波器 仿真 混合线性/非线性 目标跟踪 signal processing quasi-Gaussian Rao-Blackwellized particle filter simulation mixed linear/non- linear target tracking
  • 相关文献

参考文献15

  • 1Gordon N J, Salmood D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. IEE Proceedings-F, 1993, 140(2): 107-113. 被引量:1
  • 2Anderson B D O, Moore J B. Optimal filtering[M]. Englewood Ciffs, NJ: Prentice-Hall, 1979. 被引量:1
  • 3GAO Yu ZHANG Jian-qiu HU Bo.A Polynomial Prediction Filter Method for Estimating Multisensor Dynamically Varying Biases[J].Chinese Journal of Aeronautics,2007,20(3):240-246. 被引量:3
  • 4Ito K, Xiong K. Gaussian filters for nonlinear filtering problems[J]. IEEE Transactions on Automatic Control, 2000, 45(5): 910-927. 被引量:1
  • 5Kotecha J H, Djuric P M. Gaussian particle filtering[J]. IEEE Transactions on Signal Processing, 2003, 51 (10):2592-2601. 被引量:1
  • 6陈根社,文传源,陈新海.航天器相对运动估计的一种并行推广卡尔曼滤波方法[J].航空学报,1996,17(1):43-51. 被引量:2
  • 7Julier S J, Uhlmann J K, Whyte H F D. A new approach for filtering nonlinear systems[C]//Proceedings of the American Control Conference. Seattle, WA.. IEEE, 1995: 1628-1632. 被引量:1
  • 8Arulampalam M S, Maskelli S, Gordon N, et al. A tutorial on particle filters for online nonlinear non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing, 2002, 50(2): 174-188. 被引量:1
  • 9Kotecha J H, Djuric P M. Gaussian sum particle filtering [J]. IEEE Transactions on Signal Processing, 2003, 51 (10):2602-2612. 被引量:1
  • 10Wu Y X, Hu D W, Wu M P, et al. Quasi-Gaussian particle filtering[C]//Alexandrov V N, et al. LNCS. Heidelberg, Germang: Springer, 2006, 689-696. 被引量:1

二级参考文献17

共引文献18

同被引文献99

引证文献7

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部