期刊文献+

基于网格梯度的边界点检测算法的研究 被引量:9

Boundary Points Detecting Based Gradient of Grid
下载PDF
导出
摘要 为了快速有效地检测聚类的边界点,提出了网格梯度、边界网格的概念以及一种基于网格梯度的边界点检测算法(Boundary Points Detecting Based Gradient of Grid,BPGG),该算法先求出网格的梯度值,根据此值判断该网格是否为边界网格,进而确定聚类边界点.实验表明该算法可以在含有任意形状、大规模数据集上快速有效地检测出聚类的边界点,并去除噪声. In order to detect the boundary points of clusters, this paper proposes the concept of grid's gradient and boundary grid, and a boundary points detecting algorithm called (Boundary Points detecting based Gradien of Grid,BPGG). BPGG detects boundary points of clusters according to grid's gradient. As shown by our experimental results, BPGG can be efficient and effective to detect boundary points and filter out noises in large datasets containing arbitary shaped clusters and noises.
作者 邱保志 余田
出处 《微电子学与计算机》 CSCD 北大核心 2008年第3期77-80,共4页 Microelectronics & Computer
基金 国家自然科学基金项目(60673087) 郑州大学骨干教师基金项目
关键词 边界点 聚类 梯度 boundary points dusters gradient
  • 相关文献

参考文献4

  • 1Han Jiawei, Micheline Kamber.数据挖掘概念与技术[M].范明,孟小峰,译.机械工业出版社,2001. 被引量:2
  • 2Chen Xia, Wyrme Hsu, Mong Li Lee, et al. BORDER: efficient computation of boundary points[J ]. IEEE transaction on knowledge and data engineering, 2006( 18):289-303. 被引量:1
  • 3邱保志,沈钧毅.网格聚类中的边界处理技术[J].模式识别与人工智能,2006,19(2):277-280. 被引量:13
  • 4Wesley E Snyder, Hairong Qi.机器视觉教程[M].林学誾,崔锦实,赵清杰,等译.北京:机械工业出版社,2005.9:49-55. 被引量:2

二级参考文献8

  • 1HanJW KamberM.数据挖掘概念与技术[M].机械工业出版社,2001.. 被引量:13
  • 2Wang W, Yang J, Muntz R R. STING: A Statistical Information Grid Approach to Spatial Data Mining. In: Proc of the 23rd International Conference on Very Large Data Bases. Athens,Greece, 1997, 186-195 被引量:1
  • 3Sheikholeslami G, Chatterjee S, Zhang A D. WaveCluster: A Multi-Resolution Clustering Approach for Very I.arge Spatial Databases. In: Proc of the 24th International Conference on Very Large Data Bases. New York, USA, 1998, 428-439 被引量:1
  • 4Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications. In: Proc of the ACM SIGMOD International Conference on Management of Data. Seattle, USA, 1998, 94-105 被引量:1
  • 5Zhao Y C, Song J D. GDILC: A Grid-Based Density-lsoline Clustering Algorithm. In: Proc of the International Conference on Info-Teeh and Info-Net. Beijing, China, 2001, 140-145 被引量:1
  • 6Hsu C M, Chen M S. Subspace Clustering of High Dimensional Spatial Data with Noises. In: Proe of the Pacific-Asia Conference on Knowledge Discovery and Data Mining. Sydney, Australia, 2004, 31-40 被引量:1
  • 7Ma E W M, Chow T W S. A New Shifting Grid Clustering Algorithm. Pattern Recognition, 2004, 37(3): 503-514 被引量:1
  • 8Hinneburg A, Keim D A. Optional Grid-Clustering: Towards Breaking the Curse of Dimensionality in High-Dimensional Clustering. In: Proc of the 25th International Conference on Very Large Data Bases. Edinburgh, Scotland, 1999, 506-517 被引量:1

共引文献14

同被引文献75

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部