期刊文献+

带极点的有理样条函数 被引量:1

Rational Spline Function with Prescribed Poles
下载PDF
导出
摘要 主要研究带极点有理样条函数空间——R3,2(2)(Δ;U4),不仅证明了样条函数的存在唯一性,而且还给出了其计算方法。该方法利用Gershgorin定理,由追赶法求解,解法稳定。 The spline based on the space of rational function with prescribed poles is studied. The existence and uniqueness of the rational spline interpolation functions with prescribed poles are proved, the method of computation is given. Moreover, the method has been obtained easily from the theory of Gershgorin, The algorithm, which is given by the theory, is stable, because it is solved by chasing method.
作者 谭高山
出处 《科学技术与工程》 2008年第6期1387-1389,1397,共4页 Science Technology and Engineering
关键词 带极点有理空间 C^1类分片有理插值 带极点有理样条 边界条件 the rational function space C1 rational spline interpolation rational spline with prescribed poles boundary conditions
  • 相关文献

参考文献5

  • 1[1]Langer R E.On numerical approximation.Madison:The University of Wisconsin Press,1959:25-43. 被引量:1
  • 2[2]Angel R S,Guillermo L L Approximation of transfer of infinite dimensional dynamical systems by Tational interpolants with prescribed poles.Journal of Mathematical Analysis and Application,2000;244(1):147-168. 被引量:1
  • 3王仁宏,朱功勤著..有理函数逼近及其应用[M].北京:科学出版社,2004:427.
  • 4[4]Muehlbach G.Interpolation by Cauchy-Vandermonde systems and applications.Journal of Computational and Applied Mathematics,2000;122(2):203-222. 被引量:1
  • 5谭高山.Cauchy-Vandermonde空间上插值问题的研究[J].南京晓庄学院学报,2007,23(3):14-16. 被引量:1

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部