期刊文献+

维数不超过7的超立方体三次幂的可区别数

On distinguishing number of cube of n(≤7)-dimensional hypercube
下载PDF
导出
摘要 根据n维超立方体Hn及其p次幂Hpn的结构特性,结合其顶点间距离与海明距离关系来确定其顶点坐标的性质,采用"脊"的技术和顶点着色的方法,对维数不超过7的超立方体三次幂的可区别数进行了研究。通过适当地选取顶点得到了H33的可区别数为8,H34的可区别数为5,H36和H37的可区别数都为2,及H35可区别数的一个上界为3。 According to the structural properties of the n-dimensional hypercube graph Hn and its p powers Hn^p, combined with the relations between the distance and hamming distance between its vertices, to determine the properties of the vertex coordinate, and applying the methods of the " spine" technology and vertices coloring, this paper studies the distinguishing number of the cube of the n( ≤7)- dimensional hypercube, offers the distinguishing number of graph H3^3, H4^3, H6^3 and H7^3 is 5,8,2 and 2, obtained respectively, and concludes that the upper boundary of the distinguishing number of graph H5^3 is 3 by selecting vertices properly.
出处 《黑龙江科技学院学报》 CAS 2008年第1期61-64,80,共5页 Journal of Heilongjiang Institute of Science and Technology
关键词 图论 可区别数 超立方体 图着色 graph theory distinguishing number hypercube graph coloring
  • 相关文献

参考文献7

  • 1ALBERTSON M, COLLINS K. Symmetry breaking in graphs [ J ]. Electron. J. Combin, 1996, (3) : 1 - 17. 被引量:1
  • 2BILL BOGSTAD, LENOREJ COWEN. The distinguishing number of the hypercube[ J ]. Discrete Mathematics ,2004,283:29 - 35. 被引量:1
  • 3高志军,蔡颖,杜杰,温宇鹏.超立方体三次幂的可区别数研究[J].大连海事大学学报,2006,32(2):121-126. 被引量:7
  • 4高志军,李懿,张绍兵.超立方体的边可区别数[J].黑龙江科技学院学报,2007,17(5):381-383. 被引量:3
  • 5CHENG C C T, Three problems in graph labeling[ D]. Baltimore, Maryland,USA. Department of Mathematical Sciences,Johns Hopkins University, 1999. 被引量:1
  • 6POTANKA K, Groups, graphs and symmetry breaking[ D]. Virginia, USA. Department of Mathematics, Virginia Polytechnic Institute, 1998. 被引量:1
  • 7RUSSELL A, SUNDARAM R. A note on the asymptotics and computational complexity of graph distinguishability [ J ]. Elecetron. J.Combin. 1998,(5) :1 -7. 被引量:1

二级参考文献11

  • 1高志军,蔡颖,杜杰,温宇鹏.超立方体三次幂的可区别数研究[J].大连海事大学学报,2006,32(2):121-126. 被引量:7
  • 2ALBERTSON M,COLLINS K. Symmetry breaking in graphs[J]. Electron J Combin, 1996(3) : 1-17. 被引量:1
  • 3BOGSTAD B, COWEN L. The distinguishing number of the hypercube[J]. Discrete Mathematics, 2004,283: 29-35. 被引量:1
  • 4CHENG C C T. Three problems in graph labeling[D]. [S. l.] :Johns Hopkins University. 1999:1-165. 被引量:1
  • 5POTANKA K. Groups, graphs and symmetry breaking[ D]. [ S. l. ] : Virginia Polytechnic Institute, 1998:1-63. 被引量:1
  • 6RUSSELL A, SUNDARAM R. A note on the asymptotics and computational complexity of graph distinguishability[J].Electron J Combin, 1998(5) : 1-7. 被引量:1
  • 7ALBERTSON M,COLLINS K,Symmetry breaking in graphs[J].Electron.J.Combin,1996,(3):1-17. 被引量:1
  • 8BOGSTAD B,COWEN L.The distinguishing number of the hypercube[J].Discrete Mathematics,2004,283:29-35. 被引量:1
  • 9CHENG C C T.Three problems in graph labeling[D].Baltimore,Maryland,USA:Department of Mathematical Sciences,Johns Hopkins University,1999. 被引量:1
  • 10POTANKA K.Groups,graphs and symmetry breaking[D].Virginia,USA:Department of Mathematics,Virginia Polytechnic Institute,1998. 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部