期刊文献+

用复规范形法研究窄带随机动力系统 被引量:1

Investigation of Narrow-Band Random Dynamic Systems by Complex Normal Form Method
下载PDF
导出
摘要 为了深入研究窄带噪声作用下随机动力系统的特性,将复规范形法用于窄带随机动力系统.研究了Duffing、Rayleigh和Van der pol方程在谐和与窄带随机参数激励联合作用下的主共振响应和稳定性.由复规范形法得到了此系统响应振幅和相位所满足的方程,再由摄动法分析了系统的主共振响应和稳定性,并用随机增维精细积分法验证了方程理论分析结果的正确性,用数值法计算了平凡解的Lyapunov指数曲面.结果表明,随着窄带随机扰动强度的增加,系统稳态解的相图从极限环变为扩散的极限环.研究证实了复规范形法用于窄带随机动力系统是有效的. In order to study the property of random dynamic systems excited by narrow-band noise, the complex normal form method was applied to narrow-band random dynamic systems. The principal resonance and stability of Duffing, Rayleigh and Van der pol oscillator under combined harmonic and narrow-band random parametric excitation were investigated. Equations of the amplitude and phase were obtained by using the complex normal form method. Then the perturbation method was used to analyze principal resonance and stability. The theoretical results were verified by stochastic precise integration method. The Lyapunov exponent three-dimensional surface was also obtained by numerical method. Theoretical analyses and numerical simulation showed that when the intensity of the random excitation increases, the nontrivial steady state solution may change from a limit cycle to a diffused limit cycle. The results proved the applicability of the complex normal form method for narrow-band random dynamics systems.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2008年第3期267-270,共4页 Journal of Tianjin University(Science and Technology)
基金 国家自然科学基金资助项目(10372068) 教育部博士点基金资助项目(20060056005)
关键词 窄带随机系统 复规范形法 参数主共振 最大LYAPUNOV指数 narrow-band random systems complex normal form method parametric principal resonance largest Lyapunov exponent
  • 相关文献

参考文献11

  • 1Zhu Weiqiu. Lyapunov exponent and stochastic stability of the quasi-non-integrable Hamilton systems [ J ] International Journal of Non-linear Mechanics, 2004,39 ( 4 ): 569-579. 被引量:1
  • 2Rong Haiwu, Xu Wei, Wang Xiangdong, et al. Maximal Lyapunov exponent and almost-sure sample stability forsecond-order linear stochastic system [ J ] .Internal Journal of Non-linear Mechanics, 2003,38 ( 4 ): 609-614. 被引量:1
  • 3Li Jiaorui, Xu Wei, Ren Zhengzheng, et al. Maximal Lyapunov exponent and almost-sure stability for stochastic Mathieu-Duffing system [ J ] .Journal of Sound and Vibration, 2005,286 ( 1/2 ): 395-402. 被引量:1
  • 4Rong Haiwu, Meng Guang, Wang Xiangdong, et al. Largest Lyapunov exponent for second-order linear systelns under combined harmonic and random parametric excitations [ J ] .Journal of Sound and Vibration, 2005, 283 ( 3/4/5 ): 1250-1256. 被引量:1
  • 5Yang Xiaoli, Xu Wei, Sun Zhongkui, et al. Responses of strongly non-linear oscillator parametrically excited by random narrow-band noise [ J ]. Applied Mathematics and Computation, 2005,171 ( 2 ): 885-899. 被引量:1
  • 6戎海武,徐伟,王向东,孟光,方同.谐和与随机噪声联合作用下VanderPol-Duffing振子的参数主共振[J].应用数学和力学,2002,23(3):273-282. 被引量:5
  • 7戎海武,王向东,孟光,徐伟,方同.窄带随机噪声作用下非线性系统的响应[J].应用数学和力学,2003,24(7):723-729. 被引量:4
  • 8Nayfeh A H.Method of Normal Forms [ M ] .New York. John Wiley and Sons, 1993. 被引量:1
  • 9Wedig W V. lnvariant measures and Lyapunov exponents generalized parameter fluctuations [ J ] . Structural Safety, 1990, 8 ( 1 ): 13-15. 被引量:1
  • 10朱位秋.随机振动[M].北京:科学出版社,1998.. 被引量:76

二级参考文献4

共引文献145

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部