期刊文献+

RKDG有限元方法计算流体与刚体耦合 被引量:1

Discontinuous Galerkin method and computation of fluid-rigid interaction
下载PDF
导出
摘要 用Levelset方法配合Runge-Kutta discontinuous Galerkin(RKDG)有限元方法求解流体与刚体耦合问题。用RKDG有限元方法求解欧拉方程,通过求解Level set方程对界面进行追踪,并用推广的Ghost fluid方法对流刚界面进行处理。数值实验表明,该方法具有较高的分辨率。由于该方法不需要对移动网格进行处理,因此可以处理任意形状的拓扑问题,并且很容易推广到三维。 Rigid and fluid interaction problems are solved by the level set method with the RKDG method. The system of the Eluer equations are solved by the RKDG method while the level set equation which describes the motion of the interface are solved by high-resolution WENO finite difference scheme. The extended ghost fluid method is used to deal with the solid and fluid boundary. Numerical tests on two dimensional flow are carried ou and satisfactory results are obtained. This method can be extended to three dimensional questions since no mesh modification is needed.
出处 《爆炸与冲击》 EI CAS CSCD 北大核心 2008年第1期80-85,共6页 Explosion and Shock Waves
关键词 流体力学 流刚耦合 GHOST fluid方法 间断Galerkin法 LEVEL SET方法 fluid mechanics rigid and fluid interaction ghost fluid method discontinuous Galerkin method level set method
  • 相关文献

参考文献11

  • 1Reed W H, Hill T R. Triangular mesh methods for the neutron transport equation[R]. Los Alamos Scientific Laboratory Report, LAUR-73-749,1973. 被引量:1
  • 2Cockburn B, Wang S C. TVB Runge-Kutta local projecting discontinuous Galerkin finite element methods for conservation laws Ⅱ: General framework[J]. Mathematics of Computation, 1989,52:411-435. 被引量:1
  • 3Cockburn B, Wang S C. TVB Runge-Kutta local projecting discontinuous Galerkin finite element methods for conservation laws Ⅳ: The multidimensional case[J]. Mathematics of Computation,1990,54:541-581. 被引量:1
  • 4Cockburn B, Wang S C. TVB Runge-Kutta local projecting discontinuous Galerkin finite element methods for conservation laws Ⅴ: The multidimensional systems[J]. Journal of Computational Physics, 1998,141:199-224. 被引量:1
  • 5Harlow F H, Welch J F. Numerical calculations of time-dependent viscous in compressible flow of fluid with free surface[J]. Physics of Fluids, 1965,8:2182-2189. 被引量:1
  • 6Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundary[J]. Journal of Computational Physics, 1981,39:201-225. 被引量:1
  • 7Osher S, Sethian J A. Fronts propagating with curvature dependent speed: algorithms based on Hamilton Jacobi formulations[J]. Journal of Computational Physics, 1988,79(1):12-49. 被引量:1
  • 8Fedkiw R P, Marquina A, Merriman B. An isobaric fix for the overheating problem in multi-material compressile flows[J]. Journal of Computational Physics, 1999,148: 545-578. 被引量:1
  • 9Osher S, Wang S C. High order essentially non-oscillatory schemes for Hamilton Jacobi equations[J]. SIAM Journal on Numerical Analysis, 1991,28:907-922. 被引量:1
  • 10Jiang G S, Wu C C. A high order WENO finite difference scheme for the equations of ideal magneto hydrodynamics[J]. Journal of Computational Physics, 1999,150:561-594. 被引量:1

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部