期刊文献+

基于纹理分割恒虚警检测器设计与验证

Design and Validation of Texture Segmentation Based-CFAR Detector
下载PDF
导出
摘要 提出一种基于纹理分割恒虚警(TSB-CFAR)检测器,旨在解决杂波边缘情况下恒虚警检测器性能急剧下降的问题。该检测器由杂波分割模块和变参考单元CFAR模块组成,前级杂波分割模块通过多重分形纹理分割算法对杂波图进行区域分割,跟踪杂波边缘在当前参考单元中的位置,后级CFAR检测模块根据杂波边缘位置,选择合适的参考单元参与目标检测。理论分析表明该检测器不仅具有良好的杂波边缘虚警控制能力,而且在均匀背景下能够达到单元平均恒虚警(CA-CFAR)检测器的性能。IPIX海杂波和MSTAR合成孔径雷达地杂波数据检测实验也证实了本文方法的有效性。 A texture segmentation based-constant false alarm rate (TSB-CFAR) detector is designed to solve the clutter edge performance degradation problem for many conventional detectors. TSB-CFAR consists of a clutter map texture segmentation module and a varying reference cell CFAR detection module. The segmentation module performs multifractal segmentation to the clutter map and tracks clutter edge locations in reference cells while the posterior CFAR detection module selects proper reference cells for detection according to anterior results. Theoretical analyses show that TSB-CFAR has an excellent performance in clutter edge scenarios and maintains an equivalent performance to CA-CFAR in homogeneous scenarios. The MSTAR SAR ground TSB-CFAR detector is proved to be effective segmentation by IPIX sea clutter and clutter detection experiments.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2008年第1期80-84,共5页 Journal of Nanjing University of Aeronautics & Astronautics
基金 航空科学基金(04D52032)资助项目
关键词 恒虚警 杂波跟踪 纹理分割 多重分形分割 constant false alarm rate (CFAR) clutter tracking texture segmentation multifractal segmentation
  • 相关文献

参考文献15

  • 1Shnidman D A. Radar detection in clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005,41(3):1056- 1067. 被引量:1
  • 2Merrill I S. Introduction to radar systems[M]. 3rd ed. New York: McGraw-Hill, 2002. 被引量:1
  • 3Finn H M. A CFAR design for a window spanning two clutter fields[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986,22(2) : 155- 169. 被引量:1
  • 4Chen Biao, Varshney P K, Michels J H. Adaptive CFAR detection for clutter edge heterogeneity using Bayesian inference [J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39 (4):1462-1470. 被引量:1
  • 5Smith M E, Varshney P K. Intelligent CFAR processor based on data variability[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000,36 (3) :837- 847. 被引量:1
  • 6Maio A De, Farina A, Foglia G. Design and experimental validation of knowledge based CFAR detectors[C]//2006 IEEE Conference on Radar. New York, USA: IEEE, 2006:128-135. 被引量:1
  • 7Chaudhuri B B, Sarkar N. Texture segmentation using fractal dimension[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17 (1):72-77. 被引量:1
  • 8Martinez P, Schertzer D,Pham K K. Texture modelization by multifractal processes for SAR image segmentation[C]//Proceedings of 1997 International Radar Conference. Edinburgh, UK: IEE, 1997: 135-139. 被引量:1
  • 9Du G, Yeo T S. A novel multifractal estimation method and its application to remote image segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002,40(4) :980-982. 被引量:1
  • 10Chen Yanhui, Ji Hongbing, Xie Weixin. Study on fractal model for radar clutter[C]//Proceedings of the 3rd World Congress on Intelligent Control and Automation. Hefei, China: IEEE, 2000, 3: 2145- 2148. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部