期刊文献+

矩形域和三角域上有理Bézier曲面片相互转换的Blossoming方法

Conversion between rational rectangular and rational triangular Bézier patches by Blossoming method
下载PDF
导出
摘要 采用Blossoming方法,讨论了有理Bézier矩形曲面片和三角曲面片之间的相互转换,将一个(m,n)次有理Bézier矩形片转换为两个m+n次有理Bézier三角片,以及通过重新参数化将一个n次有理Bézier三角片转换为三个非退化(n,n)次有理Bézier矩形片,得到相互转换的显式表达,并给出了算法.数值例子表明了Blossoming方法的有效性. The conversion problem between rectangular and triangular rational Bézier patches was studied by means of the Blossoming method. A rectangular rational Bézier patch of degree (m,n) was converted into two triangular rational Bézier patches of degree m+n and a triangular rational Bézier patch of degree n was converted into three rectangular rational Bézier patches of degree (n,n) through reparametrization. Explicit expressions and algorithms were obtained. Some numerical examples were provided to illustrate the efficiency of Blossoming method.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2008年第2期121-129,162,共10页 JUSTC
基金 国家重点基础研究发展(973)计划(2004CB318000) 国家自然科学基金(60533060 60473132)资助
关键词 有理Bézier矩形曲面片 有理Bézier三角曲面片 BLOSSOMING rational rectangular Bézier patch rational triangular Bézier patch Blossoming
  • 相关文献

参考文献10

  • 1Goldman R, Filip D. Conversion from B4zier rectangles to B4zier triangles[J]. Computer Aided Design, 1987, 19(1):25-27. 被引量:1
  • 2曹毓秀,孙延奎,唐龙,唐泽圣.三角域Bezier曲面若干算法研究[J].清华大学学报(自然科学版),2001,41(7):83-86. 被引量:7
  • 3Hu S M. Conversion of a triangular Bezier patch into three rectangular Bezier patches [J]. Computer Aided Geometric Design, 1996, 13(3): 219-226. 被引量:1
  • 4刘志平,王仁宏.三角Bézier曲面和四边Bézier曲面之间的相互转化[J].Journal of Mathematical Research and Exposition,2006,26(3):525-530. 被引量:3
  • 5Ramshaw L. Blossoms are polar forms[J]. Computer Aided Geometric Design, 1989, 6(4): 323-358. 被引量:1
  • 6Lai M J. A characterization theorem of multivariate splines in blossoming form [J]. Computer Aided Geometric Design, 1991, 8(6): 513-521. 被引量:1
  • 7Feng Y Y, Kozak J, Zhang M. On the dimension of the C^1 splines space for the Morgan-Scott triangulation from the blossoming approach [C]//Fontanella F, Jetter K, Laurent P J. Advanced Topics in Multivariate Approximation. Singapore: World Scientific Publishing, 1996 : 71-86. 被引量:1
  • 8Goldman R, Lyche T. Knot Insertion and Deletion Algorithms for B-spline Curves and Surfaces [M]. Philadelphia: SIAM, 1993. 被引量:1
  • 9Goldman R. Pyramid Algorithms: A Dynamic Programming Approach to Curves and Surfaces for Geometric Modeling[M]. New York: Elsevier, 2003. 被引量:1
  • 10Feng, YY,Kozak, J.THE THEOREMS ON THE B-B POLYNOMIALS DEFINED ON A SIMPLEX IN THE BLOSSOMING FORM[J].Journal of Computational Mathematics,1996,14(1):64-70. 被引量:2

二级参考文献7

  • 1曹毓秀.彩色CRT电子束着屏误差校正CAD理论和应用研究[M].西安:西北工业大学,1999.. 被引量:1
  • 2曹毓秀,学位论文,1999年 被引量:1
  • 3BRUECKNER I.Construction of Bézier points of quadrilaterals from those of triangles[J].Comput.Aided Design,1982,12(1):21-24. 被引量:1
  • 4GOLDMAN R N,FILIP D J.Conversion from Bézier rectangles to Bézier triangles[J].Comput.Aided Design,1987,19(1):25-27. 被引量:1
  • 5HU Shi-min.Conversion between triangular and rectangular Bézier patches[J].Comput.Aided Geom.Design,2001,18(7):667-671. 被引量:1
  • 6DEROSE T D.Compositing Béier simplexes[J].ACM transaction on Graphics,1988,7(3):198-221. 被引量:1
  • 7DEROSE T D,GOLDMAN R N,HAGEN H.et al.Functional Composition Algorithms via Blossoming[J].1993,TOG:113-135. 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部