期刊文献+

鲁棒的模糊方向相似性聚类算法 被引量:2

A robust clustering algorithm with fuzzy directional similarity
下载PDF
导出
摘要 鉴于文本数据具有方向性数据的特征,可利用方向数据的知识完成对文本数据聚类,提出了模糊方向相似性聚类算法FDSC,继而从竞争学习角度,通过引入隶属度约束函数,并根据拉格朗日优化理论推导出鲁棒的模糊方向相似性聚类算法RFDSC.实验结果表明RFDSC算法能够快速有效地对文本数据集进行聚类. One of the important characteristics of text clustering in datasets is that each cluster center in the dataset has a direction that is different from that of all other cluster centers. This directional information should be incorporated in clustering analysis. In this paper, a new robust fuzzy directional similarity clustering algorithm (RFDSC) is proposed by introducing membership constraints. The new objective function was constructed. Finally, the robustness and convergence of the proposed algorithm were analyzed from the viewpoint of competitive learning. Experimental tests of text clustering in datasets using RFDSC demonstrate its effectiveness.
出处 《智能系统学报》 2008年第1期43-50,共8页 CAAI Transactions on Intelligent Systems
基金 国家"863"资助项目(2006AA10Z313) 国家自然科学基金资助项目(60773206 60704047) 国防应用基础研究基金资助项目(A1420461266) 教育部科学研究重点基金资助项目(105087)
关键词 聚类算法 方向相似性 鲁棒性 竞争学习 clustering algorithm directional similarity robustness competitive learning
  • 相关文献

参考文献13

  • 1[1]DHILLON I S,MODHA D S.Concept decompositions for large sparse text data using clustering[J].Machine Learning,2001,42(1):143-175. 被引量:1
  • 2[2]BANERJEE A,DHILLON I S,GHOST J,et al.Generative model based clustering of directional data[C]// Conference on Knowledge Discovery in Data.Washington,DC,2003. 被引量:1
  • 3[3]LI H X,WANG S T,XIU Y.Applying robust directional similarity based clustering approach RDSC to classification of gene expression data[J].J Bioinformatics and Computational Biology,2006,4(3):745-768. 被引量:1
  • 4[4]ZHANG Y J,LIU Z Q.Self-splitting competitive learning:a new on-line clustering paradigm[J].IEEE Trans on Neural Network,2002,13(2):369-380. 被引量:1
  • 5[5]WU S H,LIEW W C,YAN H,et al.Cluster analysis of gene expression data based on self-splitting and merging competitive learning[J].IEEE Trans on Information Technology in Biomedicine,2004,8(1):5-15. 被引量:1
  • 6[6]XU L,KRZYAK A,OJA E.Rival penalized competitive learning for clustering analysis,RBF net and curve detection[J].IEEE Trans on Neural Network,1993,4(4):636-649. 被引量:1
  • 7[8]TAN P N.MICHAEL S,KUMAR V.Introduction to data mining[M].Boston:Addison Wesley,2005. 被引量:1
  • 8[10]ALEXANDER S,JOYDEEP G.Cluster ensembles-a knowledge reuse framework for combining partitions[J].Journal of Machine Learning Research,2002,3(3):583-617. 被引量:1
  • 9[11]MAKOTO I,TAKENOBU T.Hierarchical Bayesian clustering for automatic text classification[R].Department of Computer Science,Tokyo Institute of Technology,1995. 被引量:1
  • 10[12]RAND W.Objective criteria for the evaluation of clustering methods[J].Journal of the American Statistical Association,1971,66(336):846-850. 被引量:1

同被引文献43

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部