期刊文献+

基于小波偏差值的大规模网络异常检测算法 被引量:2

Anomaly detection algorithm of large scale network based on wavelet deviation
下载PDF
导出
摘要 针对大规模高速网络中传统异常检测算法检测效率、扩充性等不足,提出一种新的异常检测算法,将大规模的高速网络流量汇聚看成信号来处理,通过小波三层聚合算法将其分解成高中低三个频段,再利用小波偏差值算法对影响流量的关键频段进行运算,最终得到可突显流量异常的不同时间窗内偏差值分布.试验分析表明了该算法的有效性和可行性,且检测效率较高,可被用于构建大规模高速网络自动实时在线异常检测系统. In view of the shortcomings of traditional anomaly detection algorithms in large-scale high-speed network, such as lacks of efficiency and extensibility and so on, a new anomaly detection algorithm was proposed. Large-scale high-speed network traffic was processed as signal, which can be decomposed into high, middle and low frequency bands. Then the key bands affecting network traffic were processed through the wavelet deviation algorithm. Eventually the deviation's distribution within different time windows was derived, which can highlight anomalies. The experiments show the effectiveness, feasibility and high detection efficiency of the algorithm, which can be used to build an on-line real-time automatic anomaly detection system in large-scale high-speed network.
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2008年第1期70-73,共4页 Journal of Jiangsu University:Natural Science Edition
基金 江苏省教育厅高校科学研究基金资助项目(03KJD520073)
关键词 网络 小波偏差值 异常检测 小波多分辨率分析 时间窗 小波三层聚合 network wavelet deviation anomaly detection wavelet multi-resolution analysis time window wavelet three-level aggregation
  • 相关文献

参考文献8

二级参考文献30

  • 1刘欣然.网络攻击分类技术综述[J].通信学报,2004,25(7):30-36. 被引量:36
  • 2张介秋,梁昌洪,陈砚圃.卷积窗及其在电力系统参量估计中的应用[J].电子学报,2004,32(12):2013-2016. 被引量:10
  • 3.台湾交通大学Netflow文档[EB/OL].http:∥netflow.nctu.edu.tw/netflow.html.,. 被引量:1
  • 4钱晓元.[D].大连:大连理工大学,1997. 被引量:5
  • 5WilliamStallings著 胡成松等译.SNMP网络管理[m].北京:中国电力出版社,2001.. 被引量:36
  • 6Barnsley M F. Fractal function and interpolation [ J ].Constr Approx, 1986(2) :303 -329. 被引量:1
  • 7Donovan G C, Geronimo J S, Hardin D R, Massopust P R. Construction of orthogonal wavelets using fractal interpolation functions[ J ]. SIAM J Math Anal, 1996,27(4) :1158 - 1192. 被引量:1
  • 8ICOVE D,SEGER K,VONSTORC W.Computer Crime:a Crimefighter's Handbook[M].O'Reilly & Associates,Inc,1995. 被引量:1
  • 9COHEN F.nformation system attacks:a preliminary classification scheme[J].Computers and Security,1997,16(1):29-46. 被引量:1
  • 10TEKL P,PAUL W.Can computer crime be stopped?[J].IEEE Spectrum,1984,21(5):34-45. 被引量:1

共引文献32

同被引文献16

  • 1李光海,刘时风.基于小波分析的声发射源定位技术[J].机械工程学报,2004,40(7):136-140. 被引量:31
  • 2诸葛建伟,王大为,陈昱,叶志远,邹维.基于D-S证据理论的网络异常检测方法[J].软件学报,2006,17(3):463-471. 被引量:56
  • 3龚斌,金志浩,齐辉,闻邦椿.无须测量声速的声发射源定位方法研究[J].仪器仪表学报,2007,28(1):185-188. 被引量:4
  • 4李忠国,张为公,匡军,刘广孚.基于动载的路面不平度识别的小波特征提取[J].江苏大学学报(自然科学版),2007,28(4):305-308. 被引量:5
  • 5Han Jian'gang, Ren Weixin, Sun Zengshou. Wavelet packet based damage identification of beam structures [ J]. International Journal of Solids and Structures, 2005,42 ( 6 ) : 6610 - 6627. 被引量:1
  • 6Jiao Jingpin,He Cunfu, Wu Bin, et al. Application of wavelet transform on modal acoustic emission source location in thin plates with one sensor [ J 1. International Journal of Pressure Vessels and Piping,2004,81 ( 3 ) :427 -431. 被引量:1
  • 7Law S S,Li X Y, Zhu X Q, et al. Structural damage detection from wavelet packet sensitivity [J]. Engineering Structures, 2005, 27 (5) : 1339 - 1348. 被引量:1
  • 8Rucka M,Wilde K. Crack identification using wavelets on experimental static deflection profiles[J]. Engineering Structures, 2006, 28 (3) :279 - 288. 被引量:1
  • 9Zhu X Q,Law S S. Wavelet-based crack identification of bridge beam from operational deflection time history [J]. International Journal of Solids and Structures, 2006,43 ( 9 ) : 2299 - 2317. 被引量:1
  • 10HEBERLEIN L,DIAS G V,LEVITT K N,et al.A network security monitor[C] // Proceedings of the IEEE Computer Society Symposium.Research in Security and Privacy.New York:IEEE,1990:296-304. 被引量:1

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部