期刊文献+

基于改进WD的多分量Chirp信号瞬时频率估计方法 被引量:2

A High-Precision Instantaneous Frequency(IF) Estimation Method of Multi-Component Chirp Signals
下载PDF
导出
摘要 对Chirp信号的常用估计方法是Wigner分布峰值(Wigner Distribution Maxima,WDM)法,但在低信噪比情况下,Wigner分布(Wigner Distribution,WD)峰值往往偏离真实值造成瞬时频率(Instantaeous Frequenty,IF)估计误差大。文中提出了一种基于改进WD的多分量Chirp信号瞬时频率估计方法——Wigner Viterbi拟合法(Wigner Viterbi Fitting,WDVF)法。该方法将信号的WD作为图像,运用Viterbi算法分离出多分量Chirp信号的各个信号分量,再估计出各个分量的瞬时频率。新方法的估计精度高,在低信噪比情况下性能明显优于WDM法,并且WDVF法能较好地抑制时频交叉项与边缘效应。仿真结果表明,在信噪比为-15^-8 dB时,与WDM法相比,WDVF法的瞬时频率估计均方误差能减少约50%,具有良好的工程应用价值。 Aim. Under certain conditions, the Wigner distribution maxima (WDM) method gives inaccurate estimation of the IF of multi-component Chirp signal. We now present a new Wigner distribution Viterbi fitting (WDVF) method that can estimate such IF with much higher precision. In the full paper, we explain the WDVF method in some detail; in this abstract, we just add some pertinent remarks to listing the two topics of explanation. The first topic is: the WDM method of IF estimation. In this topic, we point out that IF estimation errors increase because the WDM often deviate from their true values if the signal to noise ratio (SNR) is low. The second topic is: the IF estimation method based on the WDVF method. Under this method, we transform the Wigner distribution of the Chirp signal into digital image and apply the Viterbi algorithm to separating the multi-component Chirp signal into individual-component signals. Then we carry out the linear fitting of the individual components thus separated and obtain their IFs estimated by the WDVF method, as shown in Fig. 3(c) in the full paper. Finally we simulate and analyze the performance of the WDVF method by comparing it with the WDM method. The simulation results, shown in Fig. 4 in the full paper, indicate preliminarily that the WDVF method reduces considerably the IF estimation errors under low SNR and effectively suppresses the time- frequency interference items and edge effects. Its performance is better than the WDM method, especially under low SNR. When SNR is -15 dB to -8 dB, the WDVF method can reduce the mean square error by approximately 50% compared with the WDM.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2008年第1期83-87,共5页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(60572098) 航空基金(05F53027)资助
关键词 瞬时频率估计 多分量CHIRP信号 Wigner分布峰值法 WIGNER Viterbi拟合法 instantaneous frequency (IF) estimation, multi-component Chirp signal, Wigner distribution maxima (WDM), Wigner distribution Viterbi fitting (WDVF) method
  • 相关文献

参考文献7

  • 1Boashash B. Estimating and Interpreting the Instantaneous Frequency of a Signal(Part 1): Fundamental. Proc of IEEE on Digital Object Identifier, 1992, 80(4): 519-538 被引量:1
  • 2戴延中,李志舜.基于Wigner-Ville分布的宽带回波瞬时多普勒估计方法[J].声学学报,2002,27(2):137-140. 被引量:10
  • 3Rao P, Taylor F J. Estimation of the Instantaneous Frequency Using the Discrete Wigner Distribution. Electronics Letters, 1990, 26(1): 246-248 被引量:1
  • 4Katkovnik V, Stankovic L. Instantaneous Frequency Estimation Using the Wigner Distribution with Varying and DataDriven Window Length. IEEE Trans on Signal Processing, 1998, 46(9):2315-2326 被引量:1
  • 5Andria G, Savino M, Trotta A. Application of Wigner-Ville Distribution to Measurements on Transient Signals. IEEE Trans on Instrumentation Measurement, 1994, 43(2):187-193 被引量:1
  • 6Djurovic I, Stankovic L. Influence of High Noise on the Instantaneous Frequency Estimation Using Time-Frequency Distribution. Signal Processing Letters, 2000, 7(11):317-319 被引量:1
  • 7Djurovic I, Stankovib L J. An Algorithm for the Wigner Distribution Based Instantaneous Frequency Estimation in a High Noise Environment. IEEE Trans on Signal Processing, 2004, 84(9):631-643 被引量:1

二级参考文献2

  • 1Van Trees H L 毛士艺等(译).检测、估计和调制理论,卷I:检测、估计和线性调制理论[M].北京:国防工业出版社,1983.. 被引量:1
  • 2朱yue.主动声呐检测信息原理[M].北京:海洋出版社,1990.. 被引量:1

共引文献9

同被引文献20

  • 1王军,李亚安.多分量信号时频分析交叉项抑制研究[J].探测与控制学报,2004,26(4):13-17. 被引量:9
  • 2殷晓中,于盛林.信号的时频分析理论与应用评述[J].现代电子技术,2006,29(21):118-120. 被引量:23
  • 3吴军彪,陶国良,陈进.基于时频独立分量分析的Wigner-Ville分布交叉项消除法[J].浙江大学学报(工学版),2007,41(2):254-256. 被引量:5
  • 4Zediker M S, Rice R R, Hollister J H. Method for extending range and sensitivity of a fiber optic micro Doppler ladar system and apparatus therefore [P]. United States of AmericaPatent,1998. 被引量:1
  • 5Chen V C, Li F Y, Ho S S. Micro Doppler effect in radar-phenomenon, model and simulation study[J]. IEEE Trans. on Aerospace and Electronic Systems, 2006,42 ( 1 ) :2 - 21. 被引量:1
  • 6Boashash B, Ristich B. Polynomial Wigner-Ville distributions and time-varying higher-order spectra[C]//Proc, of the IEEE Signal Processing International Symposium on Time Frequency and Time-Scale Analysis, 1992 : 31 - 34. 被引量:1
  • 7Boashash B, Ristic B. Time-varying polyspectra and reduced Wigner-Ville trispectrum[J]. International Society for Optical Engineering, 1992,1770(1) : 268 - 279. 被引量:1
  • 8Valeau V, Valiere J C, Mellet C. Instantaneous frequency tracking of a sinusoidally frequency-modulated signal with low modulation[J]. Signal Processing ,2004,86(84) : 1147 - 1165. 被引量:1
  • 9Stankovic L. Time-frequency distributions with complex argument[J]. IEEE Trans. on Signal Processing, 2002,50 (3) : 475 - 486. 被引量:1
  • 10Stankovic S, Zaric N, Orovic I. General form of time-frequency distribution with complex-lag argument[J]. IEEE Electronics Letters,2008,44(11) :214 -218. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部