期刊文献+

完全未知环境下机器人探索路径策略与仿真 被引量:3

Path Exploring Strategy and Simulation for Robot in Full Unknown Environment
下载PDF
导出
摘要 为了使工作在完全未知环境中的机器人能够灵活应对多种类型障碍,提出了一种完全未知环境中机器人探索路径的新思路,即充分利用机器人感知区域内的局部环境信息,在BUG路径规划算法基础上采用所提出的两层路径选择策略(TLPC)以实时决策机器人的行为。在两层路径选择策略的作用下,一方面使机器人在面对障碍时具有类人的路径选择功能,避免了机器人避障的盲目性;另一方面由于机器人具有逆转跟踪障碍边界方向的功能,在面对特殊障碍时能够以较短路径绕行,从而减小整体路径的冗余度。此算法体现了机器人在未知环境中的智能性和对较复杂环境的适应性。仿真实验证明算法可行性。 A new online path planning method is presented for full unknown environment. The BUG algorithm and the two-level strategies of path choice presented are combined to decide robot's action real-timely. In the method two - level strategies of path choice simulate human's thinking mode in order to decide which direction of obstacle robot should follow. It can reduce the blindness of robot in avoiding obstacles and path redundancy, also the planning algorithm makes the robot adapt more complex environment. At last, simulation result indicates the feasibility of the algorithm.
作者 张彦 关胜晓
出处 《计算机仿真》 CSCD 2008年第2期199-202,共4页 Computer Simulation
关键词 完全未知环境 多种类型障碍 跟踪障碍边界 两层路径选择策略 Unknown environment Multi -type obstacles Obstacle boundary following Two- level path choosing
  • 相关文献

参考文献8

二级参考文献59

  • 1王小忠,孟正大.机器人运动规划方法的研究[J].控制工程,2004,11(3):280-284. 被引量:18
  • 2邰宜斌,席裕庚,李秀明.一种机器人路径规划的新方法[J].上海交通大学学报,1996,30(4):94-100. 被引量:14
  • 3[1]Latombe J C.Robot motion planning[M].Kluwer Academic Publishers,1991 被引量:1
  • 4[2]Glasius R.Neural network dynamics for path planning and obstacleavoidance[J].Neural Networks, 1995; 8 ( 1 ): 125~133 被引量:1
  • 5[3]Yang S X,M Max. Neural Network Approaches to Dynamic CollisionFree Trajectory Generation[J].IEEE SMC Part B,2001;31(3):302~318 被引量:1
  • 6[4]Kassim A,V Kumar. Path planners based on wave expansion neural network[J].Robotics and Autonomous Systems, 1999;26:1~22 被引量:1
  • 7[5]Muniz F et al. Neural controller for a mobile robot in nonstationary environment[C].In:the 2nd IFAC on Intelligent Autonomous Vehicles, Helsinki,Finland, 1995:275~284 被引量:1
  • 8[6]Piper J,E Granum. Computing distance transformations in convex and non-convex domains[J].pattern Recognition, 1987;20:599~615 被引量:1
  • 9[7]Al-Hasan,Vachtsevanos G.Intelligent route planning for fast autonomous vehicles operating in a large natural terrain[J].Robotics and Autonomous Systems, 2002 ;40:1~24 被引量:1
  • 10[8]Yang S X,M Max. An efficient neural network approach to dynamic robot motion planning[J].Neural Networks,2000; 13:143~148 被引量:1

共引文献133

同被引文献43

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部