摘要
研究一类具非线性扩散系数的中立型双曲泛函偏微分方程组的振动性,利用Gauss散度定理、积分不等式和泛函微分方程的某些结果,获得了该类方程组在第一类边值条件下所有解振动的若干充分判据.结论充分表明振动是由时滞量引起的,同时也揭示该类方程组与普通双曲型偏微分方程组质的差异.
The oscillation for a class of systems of neutral hyperbolic functional partial differential equations with nonlinear diffusion coefficient were studied. Some sufficient criteria were obtained for oscillation of all solutions of such systems under first boundary value conditions by employing Gauss' divergence theorem, the integral inequalities and some results of the functional differential equations. The results fully indicate that the oscillation were caused by delay and hence, also revealed the essential differences between these systems and those systems of ordinary hyperbolic partial differential equations.
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2008年第1期14-17,共4页
Journal of Anhui University(Natural Science Edition)
基金
湖南省自然科学基金资助项目(05JJ40008)
湖南省教育厅高等学校科学研究基金资助项目(07C164)
关键词
非线性扩散系数
中立型
双曲型泛函偏微分方程组
时滞
振动
nonlinear diffusion coefficient
neutral type
systems of hyperbolic functional partialdifferential equation
delay
oscillation