期刊文献+

基于3211多阶跃激励CFD模型的颤振导数识别研究 被引量:4

Identification of flutter derivatives based on 3211 multi-step excitation of CFD model
下载PDF
导出
摘要 提出一种通过计算流体动力学(Computational Fluid Dynamics,CFD)建立离散时间气动模型并识别颤振导数的方法,该方法通过强迫模型按一种3211多阶跃方式运动,由CFD数值模拟得到作用在模型上的气动力。由于3211多阶跃包含了丰富的频率成份,能激励起气动力系统在这一连续频域范围内的广泛响应,因而可基于3211输入-气动力输出得到定义在某一频率范围的离散时间气动模型。该气动模型能对对应不同折算风速的简谐位移输入快速仿真得到气动力输出,通过这些输入-输出就可快速识别任意折算下的颤振导数,无需对不同折算风速重复进行CFD计算。应用本文方法识别了薄平板的颤振导数,并与薄平板风洞试验结果进行了比较,颤振导数的一致性证明了本文方法的有效性。 Flutter derivatives show great importance on analysis Of bridge wind-induced vibration. They can be extracted through wind tunnel tests and CFD simulation. In this paper, a novel approach based on the CFD discrete time aerodynamic model is presented to identify flutter derivatives. This method employs the 3211 multi-step as input of velocity to excite CFD model, which can provide aerodynamic forces acting on the body through CFD simulation. An aerodynamic model in discrete time domain, defined on frequency range of interesting, can be developed based on the input-output relationship. Then the obtained aerodynamic model can be used to simulate aerodynamic response for any harmonic input with suitable frequency. Finally, flutter derivatives can be identified based on input and output time histories. The present method can extract flutter derivatives under arbitrary reduced wind speed, requiring respectively only once round of CFD simulation for heaving or pitching motion. Identification of flutter derivatives of a thin plate is carried out by using the present method, reasonable agree- ments between the identified flutter derivatives and those from Wind tunnel tests validate the efficiency of the present approach.
出处 《振动工程学报》 EI CSCD 北大核心 2008年第1期18-23,共6页 Journal of Vibration Engineering
基金 国家自然科学基金(50678067) 湖南省自然科学基金(03JJY3084) 中国博士后基金(2005038452) 上海市博士后基金(06R214148)
关键词 颤振 CFD 系统识别 模型仿真 3211多阶跃 flutter CFD system identification model simulation 3211 multi-step
  • 相关文献

参考文献8

二级参考文献32

  • 1祝志文,陈政清.数值模拟桥梁断面气动导数和颤振临界风速[J].中国公路学报,2004,17(3):41-45. 被引量:39
  • 2[1]Jens H Walther, Allan Larsen. Two dimensional discrete vortex method for applicition to bluff aerodynamics. Journal of Wind Engineering and Industrial Aerodynamics,1997;6768:183-193 被引量:1
  • 3[2]Allan Larsen,Jens H Walther. Aeroelastic analysis of girder sections based on discrete vortex simulations.Journal of Wind Engineering and Industrial Aerodynamics, 1997;67-68: 253-265 被引量:1
  • 4[3]Carrier J,Greengard L,Rokhhlin V. A fast adaptive multipole algorithm for particle simulations. SIAM J.Sci.Statist.Comput,1988;9(4): 669 被引量:1
  • 5[4]Wu J C. Numerical boundary conditions for viscous flow problems.AIAA J.,1976;14(8):1042 被引量:1
  • 6[5]Chorin A J.Numerical study of slightly viscous flow. J.Fluid Mech.,1973;57:762-785 被引量:1
  • 7[6]Huston D R,et al.The effect of fairing and turbulence on the flutter derivatives of a notably unstable bridge deck.7thICWE,1988 被引量:1
  • 8LARSEN A, WALTHER J H. Aeroelastic analysis of bridge girder sections based on discrete vortex simulations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997,67(2) :253-265. 被引量:1
  • 9FRANDSEN J B. Computational fluid-structure interaction applied to long-span bridge design[D]. Cambridge: University of Cambridge, 1999. 被引量:1
  • 10LOPEZ J M, SHEN J. An efficient spectral-projection method for the navier-stokes equations in cylindrical geometries[J]. Journal of computational physics, 1998,139(2): 308-319. 被引量:1

共引文献78

同被引文献36

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部