摘要
设A=(aij)∈Cn×n,若存在α∈(0,1),使i∈N,|aii|≥Riα(A)Si1-α(A),则称A为Ostrowski对角占优矩阵。文章首先推广Ostrowski对角占优矩阵的概念到广义Ostrowski对角占优矩阵;最后得到了判别非奇异H-矩阵的一个判定方法,进一步丰富和完善了Ostrowski对角占优矩阵和非奇异H-矩阵的理论。
Let A=(αij)∈C^n×n, if there exists α∈ (0,1) which can make |αu|≥Ri^a(A)Si^1-α(A) be right for i∈ N= { 1, 2,…, n}, then A is called an Ostrowski diagonally dominant matrix. The concept is extended to generalized Ostrowski diagonally dominant matrix and the concept of generalized Ostrowski diagonally dominant matrix is applied. At last a new criterion is obtained for a matrix to be a nonsingular H-matrix, which further improves and completes the theory of Ostrowski diagonally dominant matrix and nonsingular H-matrix.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第2期284-286,共3页
Journal of Hefei University of Technology:Natural Science
基金
辽宁省教育厅高校科研资助项目(2004F100)
辽宁石油化工大学重点学科建设资助项目(K200409)