期刊文献+

基于SVM的软件可维护性评估模型研究 被引量:7

Software maintainability evaluation model based on support vector machine
下载PDF
导出
摘要 为了解决软件可维护性的定量评估,提出基于神经网络的支持向量机工作原理,构造一种软件可维护性的定量分析模型。以16种可维护性为基础,建立软件可维护性评估模型,把以往每个软件的16种可维护性指标看作一个1×16维行矢量,并作为支持向量机的训练矢量,对其进行聚类分析,最终把软件可维护性水平分为:可维护性低,可维护性中等,可维护性高等3个类别,并对软件可维护性水平做出预测。 Based on neural network a support vector machine is presented, and then a new software maintainability evaluation model is built. Based on sixteen kinds ofmaintainability, the model considers the maintainability ofevery project in the past as a 1 ×16 dimension row vector and them as the training vectors of SVM, then has a cluster analysis about the training vectors, By classifying the analysis, project maintainability is divided into three levels: low maintainability, middle maintainability and high maintainability, the application in software maintainability is predicted.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第3期566-569,616,共5页 Computer Engineering and Design
基金 湖南省自然科学基金项目(05JJ40098) 湖南省教育厅科研基金项目(05C720)
关键词 软件项目 模型 可维护性 支持向量机 聚类 预测 sottware project model maintainability support vectormachine classify predict
  • 相关文献

参考文献9

二级参考文献22

  • 1[1]Cortes C, Vapnik V. Support Vector Networks[J]. Machine Learning, 1995, 20(3):273-297. 被引量:1
  • 2[2]Joachims T. Text Categorization With Support Vector Machines: Learning With Many Relevant Features[A]. Machine Learning: ECML-98, 10th European Conference on Machine Learning[C], 1998. 137-142. 被引量:1
  • 3[3]Allwein E, Schapire R, Singer Y. Reducing multiclass to binary: A Unifying Approach for Margin Classifiers[J]. Journal of Machine Learning Research, 2000,2(1):113-141. 被引量:1
  • 4[4]Dietterich GT, Bakiri G. Solving multiclass learning problems via error-correcting output codes[J]. Journal of Artificial Intelligence Research, 1995,2(1):263-286. 被引量:1
  • 5[5]Yang Y, Pederson J. Feature selection in statistical learning of text categorization[A]. ICML-97[C], 1997. 412-420. 被引量:1
  • 6[6]Yang Y. An Evaluation of Statistical Approaches to Text Categorization[J]. Journal of Information Retrieval, 1999,1(1):67-88. 被引量:1
  • 7李国正 王蒙 曾华军译.支持向量机导论[M].北京:电子工业出版社,2004-03.. 被引量:10
  • 8Vladimir N Vapnik.An Overview of Statistical Learning Theory[J]. IEEE Transactions on Neural Networks, 1999; 10(5) :988-999. 被引量:1
  • 9Hsu C-W,Lin C-J.A Comparison of Methods for Muhiclass Support Vector Machine[J].lEEE Transactions on Neural Networks,2002; (13) : 415-425. 被引量:1
  • 10Boonserm Kijsirkul,Nitiwut Ussivakul.Muhiclass Support Vector Machines Using Adaptive Directed Acyclic Graph[C].In:IEEE/INNS International Joint Conference on Neural Networks( IJCNN-2002 ), 2002 : 980-985. 被引量:1

共引文献177

同被引文献47

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部