摘要
为了解决软件可维护性的定量评估,提出基于神经网络的支持向量机工作原理,构造一种软件可维护性的定量分析模型。以16种可维护性为基础,建立软件可维护性评估模型,把以往每个软件的16种可维护性指标看作一个1×16维行矢量,并作为支持向量机的训练矢量,对其进行聚类分析,最终把软件可维护性水平分为:可维护性低,可维护性中等,可维护性高等3个类别,并对软件可维护性水平做出预测。
Based on neural network a support vector machine is presented, and then a new software maintainability evaluation model is built. Based on sixteen kinds ofmaintainability, the model considers the maintainability ofevery project in the past as a 1 ×16 dimension row vector and them as the training vectors of SVM, then has a cluster analysis about the training vectors, By classifying the analysis, project maintainability is divided into three levels: low maintainability, middle maintainability and high maintainability, the application in software maintainability is predicted.
出处
《计算机工程与设计》
CSCD
北大核心
2008年第3期566-569,616,共5页
Computer Engineering and Design
基金
湖南省自然科学基金项目(05JJ40098)
湖南省教育厅科研基金项目(05C720)
关键词
软件项目
模型
可维护性
支持向量机
聚类
预测
sottware project
model
maintainability
support vectormachine
classify
predict