期刊文献+

矩形巷道应力集中系数的弹性分析 被引量:10

Elastic Analysis of Stress Concentration Factor of Rectangular Drift
下载PDF
导出
摘要 若能了解矩形巷道孔边的应力集中系数表达式,则对矿山水平矩形巷道的设计和支护都有很大的帮助。首先通过量纲分析,将与矩形巷道有关的参数无量纲化,然后借助复变函数这一方法,推导了应力集中系数Kt与比例系数k、s之间的函数关系以及Kt与比例系数n之间的函数关系,并且均与数值模拟结果进行了对比分析,得到了较为满意的结果。 If stress concentration factor expression for rectangular drift opening is known, it can be of great help in the design and support of mine horizontal rectangular drift. Dimensional analysis was first made and parameters relating to rectangular drift were made dimensionless. By means of functions of complex variable, the functional relations between stress concentration coefficient Kt and ratio coefficients k, s, n were deduced and compared with numerical simulation results, which achieved satisfactory results.
出处 《金属矿山》 CAS 北大核心 2008年第2期45-48,96,共5页 Metal Mine
关键词 应力集中系数 矩形巷道 弹性分析 比例系数 函数关系 量纲分析 无量纲化 复变函数 Stress concentration coefficient,Rectangular drift,Elastic analysis,Functions of complex variable
  • 相关文献

参考文献14

  • 1赵继银,张传信.构造应力场对深井巷道围岩稳定的影响[J].金属矿山,2005,34(5):21-23. 被引量:20
  • 2靖洪文,李元海,许国安,陈坤福.深埋巷道破裂围岩位移分析[J].中国矿业大学学报,2006,35(5):565-570. 被引量:22
  • 3蒋金泉等著..巷道围岩结构稳定性与控制设计[M].北京:煤炭工业出版社,1999:225.
  • 4徐芝纶..弹性力学[M],1990.
  • 5顿志林,高家美.弹性力学及其在岩石中的应用[M].北京:煤炭工业出版社,2003. 被引量:1
  • 6吴家龙编著..弹性力学[M].北京:高等教育出版社,2001:466.
  • 7翁家杰主编..现代矿山建设技术[M].徐州:中国矿业大学出版社,1993:390.
  • 8周小平,徐小敏,卢萍,陈山林.深埋巷道的选型分析[J].岩石力学与工程学报,2006,25(z1):2700-2706. 被引量:11
  • 9吴毓熙编著..应用弹性力学[M].上海:同济大学出版社,1989:584.
  • 10陈子荫编著..围岩力学分析中的解析方法[M].北京:煤炭工业出版社,1994:416.

二级参考文献15

  • 1董方庭,宋宏伟,郭志宏,鹿守敏,梁士杰.巷道围岩松动圈支护理论[J].煤炭学报,1994,19(1):21-32. 被引量:675
  • 2许国安,靖洪文.煤矿巷道围岩松动圈智能预测研究[J].中国矿业大学学报,2005,34(2):152-155. 被引量:30
  • 3[2]Sellers E J,Klerck P.Modeling of the effect of discontinuities on the extent of the fracture zone surrounding deep tunnels[J].Tunneling and Underground Space Technology,2000,15(4):463-469. 被引量:1
  • 4[3]Diering D H.Ultra-deep level mining:future requirements[J].Journal of the South African Institute of Mining and Metallurgy,1997,97(6):249-255. 被引量:1
  • 5[4]Diering D H.Tunnels under pressure in an ultra-deep Wifwatersrand gold mine[J].Journal of the South African Institute of Mining and Metallurgy,2000,100:319-324. 被引量:1
  • 6[5]Bjorkman G S,Richards R.Harmonic hole-an inverse problem in elasticity[J].Journal of Applied Mechanics,ASME,1976,43:414-418. 被引量:1
  • 7[6]Bjorkman G S,Richards R.Harmonic hole for nonconstant field[J].Journal of Applied Mechanics,ASME,1979,46:573-576. 被引量:1
  • 8[7]Richards R,Bjorkman G S.Optimum shapes for tunnels and cavities[A].In:Proceedings of the 17th United States Symposium on Rock Mechanics[C].[s.l.]:[s.n.],1976.131-136. 被引量:1
  • 9[8]Richards R,Bjorkman G S.Optimum shapes for unlined tunnels and cavities[J].Engineering Geology,1978,12:171-179. 被引量:1
  • 10[9]Dhir S K.Optimization in a class of hole shapes in plate structures[J].Journal of Applied Mechanics,ASME,1981,48:905-908. 被引量:1

共引文献50

同被引文献100

引证文献10

二级引证文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部