期刊文献+

四元数法在动基座光电测量坐标变换中的应用 被引量:2

Application of Quaternion Method in Coordinate Transformation of Optoelectronic Measuring in Dynamic Base
下载PDF
导出
摘要 寻求一种高效的坐标变换算法一直是动基座光电测量系统中亟待解决的问题,由此研究了四元数法在动基座光电测量系统坐标变换问题中的应用;利用四元数作为旋转算子的特性,提出了一种改进的坐标变换方法,并利用这种方法推导了视轴从光电平台坐标系到载机坐标系的变换矩阵和在载机坐标系下的方位角、俯仰角计算公式;最后将该方法运用在某机载光电测量系统上,通过采用四元数法和常规方法分别进行地面仿真的数据分析结果,验证了该方法的准确性和优越性。 A high efficiency coordinate transformation method is always a desiderated problem of optoelectronic measuring system in dy namic base. Because of that, this paper studies the quaternion method which is used for solving coordinate transformation problem of optoe- lectronic measuring system in dynamic base. An improved coordinate transformation method is proposed according to the characteristic of quaternion as a rotated operator. At the same time, a transformation matrix of sight axis from platform coordinate to airplane coordinate and calculating formulas of azimuth, elevation in airplane coordinate are deduced with this method. At last, this method is applied in an airborne optoelectronlc measuring system, and then it is proved to be accurate and ascendant by the results of analyzing the data in earth simulations which are using quaternion method and the other normal method separately.
出处 《计算机测量与控制》 CSCD 2008年第1期114-116,共3页 Computer Measurement &Control
基金 国防科技预研基金资助项目(1040603)
关键词 动基座 光电测量系统 坐标变换 四元数 旋转算子 dynamic base optoelectronic measuring system coordinate transformation quaternion rotated operator
  • 相关文献

参考文献6

二级参考文献5

  • 1Mitchell E E L, and Rogers A E, Quaternion Parameters in the Simulation of a Spinning Rigid Body[J] .Simulation, Vol,4, no.6,1965, pp.390- 396. 被引量:1
  • 2W F Phillips, et. Review of Attitude Representations Used for Aircraft Kinematics[J]. Journal of Aircraft, Vol. 38, No. 4,2001, pp. 718 - 735. 被引量:1
  • 3勃拉涅茨 B H,四元数在刚体定位问题中的应用,1975年 被引量:1
  • 4王庆贵.四元数变换及其在空间机构位移分析中的应用[J]力学学报,1983(01). 被引量:1
  • 5周江华,苗育红,李宏,孙国基.四元数在刚体姿态仿真中的应用研究[J].飞行力学,2000,18(4):28-32. 被引量:41

共引文献55

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部