期刊文献+

基于神经网络和PSO的机器人路径规划研究 被引量:10

Path Planning of Robot Based on Neural Network and PSO
下载PDF
导出
摘要 提出一种神经网络和粒子群算法相结合的移动机器人路径规划方法。采用小波网络和RBF网络相结合的四层神经网络结构,克服了传统神经网络方法进行路径规划时对每个障碍均设计一些特定的隐节点,当障碍较多且环境动态时,网络结构庞大且神经元的阈值随时间的变化而需要不断改变的缺点。利用粒子群对神经网络的参数进行训练,在规定的代数内对网络参数优化,使得机器人在移动过程中能够快速响应环境的变化。通过对移动机器人在动、静态不同环境下的仿真实验,证明了方法的有效性。 A new method of neural network and particle swarm algorithm based mobile robot path planning was proposed, With combination of the advantages of wavelet network and RBF network, a four layers neural network was designed. In conventional method, many hidden cells should design for every obstacle according to information of blocks, and the scale of network was very large with many obstacles. So PSO was used to train the parameters of neural network with its character of quick optimization to make the robot respond quickly to the dynamic environment. At last, the effectiveness of the method was proved by simulation experiments of mobile robotic in dynamic and static environments.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第3期608-611,共4页 Journal of System Simulation
关键词 WRBF网络 机器人 路径规划 粒子群算法 WRBF neural network Robot Path planning particle swarm algorithm
  • 相关文献

参考文献12

二级参考文献31

  • 1JunZhang, Gilbert G. Wavelet Neural Networks for function Learning[J]. IEEE Trans. Signal Processing,1995, 2(6): 1485-1496. 被引量:1
  • 2Qinghua Zhang. Using Wavelet Network in Nonparametric Estimation[J]. IEEE Trans. Neural Network, 1997, 8(2): 227-236. 被引量:1
  • 3Nurgun Erdol, Filiz Basbug. Wavelet Transform Based Adaptive Filters: Analysis and New Results[J]. IEEE Trans. Signal Processing, 1996, 44(9): 2163-2169. 被引量:1
  • 4Chester D. Why two hidden layers are better than one[A], IEEE INT. Joint Conf. On Neural Network[C]. San Diego, CA, USA. 1990, 265-268. 被引量:1
  • 5Chang Wook Ahn, R.S. Ramakrishna. A Genetic Algorithm for shortest path Routing problem and the sizing of populations[J]. IEEE TRANS. On Evolutionary Computation, 2002, 6(6): 566-579. 被引量:1
  • 6X.Hue. Genetic algorithms for optimization: Background and applications[M]. Edinburgh parallel computing center, Univ. Edinburgh Scotand VER 1.0, FEB. 1997. 被引量:1
  • 7BORENSTEIN J,KOREB Y.The vector field Histogram-fast obstacle avoidance for mobile robots [J].IEEE Trans on Robotics and Automation,1991,7(3):278-288. 被引量:1
  • 8CORMAN T H.Introduction to Algorithms [M].Cambridge,MA:MIT Press,1990:101-104. 被引量:1
  • 9GLASIUS R,KOMODA A.Neural network dynamics for path planning and obstacle avoidance [J].Neural Networks,1995,8 ( 1 ):125-133. 被引量:1
  • 10KASSIM A,KUMAR V.Path planners based on the wave expansion neural network [J].Robotics and Autonomous Systems,1999,26(1):1-22. 被引量:1

共引文献80

同被引文献133

引证文献10

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部