期刊文献+

基于改进郭涛算法的CCEA函数优化问题 被引量:4

Improved-GT-Operator-Based Cooperative Co-evolutionary Algorithm to Function Optimization
下载PDF
导出
摘要 郭涛算法在求解函数优化问题方面具有独特的优势,其核心在于多父体杂交。鉴于郭涛算法只有杂交操作而没有变异操作,该文引入高斯正态分布变异算子,提高了对复杂问题的求解效率。分析合作式协同演化算法(CCEA),采用多种群相互作用协同进化的策略求解复杂问题。同时在合作式协同演化模型中引入了郭涛算法,求解复杂高维的函数优化问题。实验结果表明,该模型的效率优于其他模型。 Guo Tao(GT) algorithm is highly effective in solving function optimization problems. The core of the algorithm is multi-parent recombination, but it only has crossover operator, no mutation. Gauss mutation operator of Evolution Strategies(ES) is introduced. Cooperative Co-Evolution Algorithm(CCEA) uses multi-population strategy, which means that the fitness of an individual depends on the relationship between that individual and other individuals. CCEA is high-efficient in solving complicated problem. A cooperative co-evolution model to function optimization is proposed, based on an improved Guo Tao operator, which employs a Gauss mutation operator to enhance its exploring ability. Experimental results show that the model is more effective than others.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第4期231-232,249,共3页 Computer Engineering
关键词 郭涛算法 高斯变异算子 合作式协同演化算法 Guo Tao algorithm Gauss mutation operator cooperative co-evolution algorithm
  • 相关文献

参考文献6

  • 1Potter M, Jong K D. A Cooperative Coevolutionary Approach to Function Optimization[C]//Proc. of the 3rd Conference on Parallel Problem Solving from Nature. Jerusalem, Israel: Springer Press. 1994: 249-257. 被引量:1
  • 2Potter M, Jong K D. Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents[J]. Evolutionary Computation, 2000, 8(1): 1-29. 被引量:1
  • 3Popovici E, Jong K D. Understanding Competitive Co-evolutionary Dynamics via Fitness Landscapes[M]. [S. 1.]: AAAI Press, 2004. 被引量:1
  • 4康卓,李艳,刘溥,康立山,陈毓屏.求解函数优化问题的两种异步并行算法[J].武汉大学学报(理学版),2002,48(1):33-36. 被引量:13
  • 5詹炜,戴光明,龚文引.求解函数优化问题的一种高效混合演化算法[J].计算机工程与应用,2006,42(2):70-72. 被引量:8
  • 6史彦军..复杂布局的协同差异演化方法与应用研究[D].大连理工大学,2005:

二级参考文献18

  • 1Holland J H.Adaptive of Natural and Artificial Systems[M].Ann Arbor:The University of Michigan Press, 1975. 被引量:1
  • 2潘正君,康立山,陈毓屏.演化计算【M】.第1版,北京;清华大学出版社,2000. 被引量:1
  • 3王小平,曹立明.遗传算法—理论、应用与软件实现【M】.第1版,西安:西安交通大学出版社.2004. 被引量:1
  • 4周明,孙树栋.遗传算法原理及应用[M].第1版,北京:国防工业出版社.1991. 被引量:1
  • 5PAN Z J,KANG L S,CHEN Y P.Evolutionary Computation [M].Beijing:Tsinghua Univer sity Press,1998(Ch). 被引量:1
  • 6Michalewicz Z. Genetic Algorithms+Data Structures=Evolution Progra ms(3rd edition)[M]. Berlin:Springer Verlag, 1996. 被引量:1
  • 7Schwefel H P. Introduction to Evolution Strategies[A]. Gene tic Evolutiona ry Computation Conference Tutorial Program[C]. San Francisco:Morgan K aufmamn Publishers,1990. 被引量:1
  • 8GOU T .Evolutionary Computation and Optimization[D].Wuhan:Wuhan Uni versity,1999(Ch). 被引量:1
  • 9GUO T,KANG L S,LI Y.A New Algorithm for SOlving Function Optimization Probl ems with Inequality Constrints[J].J Wuhan Univ(Nat Sci Ed),1999,45[ STBZ](5B):771-775(Ch). 被引量:1
  • 10HE Jun,KANG Li-shan. The Convergence Rate of Evolutionary Algorithm s [J]. Theoretical Computer Science,1999,229:23-39. 被引量:1

共引文献17

同被引文献36

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部