期刊文献+

改进的多重分形图像奇异性分析算法 被引量:2

Improved multifractal algorithm for analyzing image singularity
下载PDF
导出
摘要 为了准确地研究图像奇异性以及各部分的属性及特征,采用一种基于亚像素边缘测度的多重分形算法,该算法根据方形孔径采样定理计算亚像素位置的梯度面密度函数值和图像任意子集(半径可以达到亚像素精度)的边缘测度,进而利用多重分形理论将实际图像分割成一系列具有不同奇异性指数的分形集合。并利用含有不同信息含量的分形集合重建原图像算法,实现了图像从纹理到边缘各层面内容的精确划分。对该算法进行了理论分析和实验验证,得到3×3亚像素方法提取的边缘信息重构原图像,其峰值信噪比达到14.76dB。结果表明,重建图像峰值信噪比主要依赖于所提取的边缘信息质量以及重构系数比,提取的各层面信息与人类的视觉系统所捕获的重要信息相吻合。 In order to analyze image singularity and the features of the different sections, a new multifractal algorithm based on sub-pixel edge measure is proposed. The greylevel gradient area density function and edge-measure of random subsets ( radii can reach the precision of sub-pixel) were obtained by the square aperture sampling law on the position of sub-pixel. Utilized the multifractal frame, the image could be segmented into a series of fractal sets of the different singularity exponents. At the same time, the reconstruction algorithm was presented by using the different information content of multifractal subset. So the image could be divided from texture to edge precisely. At last, the algorithm was analyzed and examined. The data showed that the reconstruction PSNR was 14.76dB from the edge extracted by 3 x 3 sub-pixels method. The results show that the peak signal-to- noise ratio of the reconstruction image depends on the extracted image edge quality and the coefficient ratio of the reconstruction and the information of the different layers of the image are identical with the important information from the human visual reception.
出处 《激光技术》 CAS CSCD 北大核心 2007年第6期642-645,共4页 Laser Technology
基金 国家自然科学基金资助项目(60672074) 江苏省自然科学基金资助项目(BK2006569)
关键词 图像系统 多重分形 奇异性 亚像素 边缘测度 image processing multifractal singularigy sub-pixel edge measure
  • 相关文献

参考文献11

  • 1CASTLEMAN K R. Digital image processing [ M ]. Beijing: Publishing House of Electronics Industry ,2003. 375 - 404. 被引量:1
  • 2JIANG Zh Q. Some questions in the applications research of fractaland analyse of its present situation and foreground [ J ]. Journal of Changchun Post and Telecommunication Institute,2004,22 (1) :58 -61. 被引量:1
  • 3PENTLAND A. Fractal-based description of nature scene [ J]. IEEE Transaction Pattern Analysis Machine Intelligence, 1984 6 (6) :661 - 674. 被引量:1
  • 4易亨瑜,吕百达,季云松.不同云层背景中目标的识别[J].激光技术,2004,28(2):133-136. 被引量:5
  • 5DECOSTER N, ROUX S G, ARNEODO A. A wavelet-based method for multifractal image analysis Ⅱ Application to synthetic multifractal rough surface [ J ]. European Phisical Journal, 2000, B3 ( 15 ) :704-739. 被引量:1
  • 6安波,陈怀新,陈祯培.利用液晶电视实现光学图像的实时边缘提取[J].激光技术,2002,26(1):44-46. 被引量:4
  • 7TURIEL A,PARGA N. The multi-fractal structure of contrast changes in natural images:from sharp edges to texture [ J ]. Neural computation,2000,12 (4) :763 - 793. 被引量:1
  • 8TURIEL A, MATO G. The self-similarity properties of natural images resemble those of turbulent flows [J]. Phys Rev Lett, 1998 80 (5) : 1098 - 1101. 被引量:1
  • 9NEVADO A, TURIEL A, PARGA N. Scene dependence of the nongaussian scaling properties of natural images [ J ]. Network : Computation in Neural Systems,2000,11 (2) :131 -152. 被引量:1
  • 10LYVERS E P, MITCHELL O R, MARK L et al. Subpixel measurement using a moment-based edge operator [ J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1989,11 ( 12 ) : 1293 - 1308. 被引量:1

二级参考文献12

共引文献7

同被引文献22

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部