期刊文献+

Pt/MWCNT/GC修饰电极对萘酚体系的测定应用 被引量:3

Pt/MWCNT/GC Modified Electrode and Its Application to Determination of Naphthol Isomers
下载PDF
导出
摘要 用氢气还原法制备了线度为10rim的铂纳米粒子.利用Nation的协同作用,将纳米铂和碳纳米管同时修饰到玻碳电极表面,形成纳米管、纳米铂网状结构.此复合修饰电极在HAc—NaAc体系中对萘酚的氧化表现出良好的电催化性能,不仅测量灵敏度高,而且克服了单一碳纳米管修饰电极在萘酚测定中重现性差的问题,结合微分技术,实现了萘酚异构体的同时测定.在浓度为1.0×10^-6~8×10^-4mol·L^-1范围内,1-萘酚和2-萘酚的半微分氧化峰电流值均与其浓度呈线性关系,检测限分别为5.0×10^-7和6.0×10^-7mol.L^-1. Pt nanoparticles were synthesized by using hydrogen as reduction reagent, and the complex modified electrode was fabricated by incorporating muhi wall carbon nanotubes, Pt nanoparticles and Nafion onto the glassy carbon electrode surface and is denoted as Pt/MWCNT/GC electrode. The Pt/ MWCNT/GC electrode is of good electro-catalytic response towards naphthols and better repro- ducibility than that of the MWCNT/GC electrode in the detection because of the formation of Pt- MWCNT network. With the semi-derivative technique, naphthol isomers are determined simultaneously and quantitatively with the Pt/MWCNT/GC electrode. In pH 5.8, 0.1 mol· L^-1 HAc- NaAc buffer solution, the linear calibration ranges from 1.0 × 10^-6 to 8.0 × 10^-4 mol· L^- 1 for both 1-and 2- naphthol, with detection limits of 5.0 × 10^-7 for 1-naphthol and 6.0 × 10^-7 mol· L^- 1 for 2-naphthol respectively.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第2期207-211,共5页 Journal of Tongji University:Natural Science
基金 国家自然科学基金资助项目(20471042) 教育部高等学校博士学科专项科研基金资助项目(20040247045) 上海市科委纳米技术专项研究基金资助项目(0452nm075)
关键词 纳米铂 碳纳米管 复合修饰电极 萘酚 测定 platinum nanoparticle carbon nanotube complex modified electrode naphthol determination
  • 相关文献

参考文献11

  • 1de Heer W A, Chatelain A, Ugarte D. A carbon nanotube fieldemission electron source[J]. Science, 1995,270 (5239) : 1179. 被引量:1
  • 2Ajiayan P M. Nanotubes from carbon [J]. Chemical Reviews, 1999,99 (7) : 1787. 被引量:1
  • 3Musameh M, Wang J, Merkoci A, et al. Low potential stable NADH detection at carbon nanotube modified glassy carbon electrodes[J]. Electrochem Commun, 2002,4(10) :743. 被引量:1
  • 4Wang J X, Li M X, Shi Z J, et al. Electrocatalytic oxidation of 3, 4 - dihydroxyphenylacetic acid at a glassy carbon electrode modified with single-wall carbon nanotubes [ J ]. Electrcchim Acta, 2001,47 (4) :651. 被引量:1
  • 5Chen R J, Choi H C, Bangsaruntip S, et al. An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices[J] .J Am chem Soc,2004,126 (4) : 1563. 被引量:1
  • 6陈卫祥,韩贵,LEE Jim Yang,刘昭林.Pt/CNT纳米催化剂的微波快速合成及其对甲醇电化学氧化的电催化性能[J].高等学校化学学报,2003,24(12):2285-2287. 被引量:31
  • 7王宗花,罗国安,肖素芳,王歌云.α-环糊精复合碳纳米管电极对异构体的电催化行为[J].高等学校化学学报,2003,24(5):811-813. 被引量:25
  • 8Tsang S C, Chen Y K, Harris P J F, et al. Simple chemical mcthod of opening and filling carbon nanotubes [J]. Nature, 1994,372 (6502) : 159. 被引量:1
  • 9符小艺,王远,吴念祖,桂琳琳,唐有祺.铂胶体粒子的形貌控制研究[J].化学学报,2002,60(7):1324-1330. 被引量:4
  • 10Hrapovic S, Liu Y, Male K B, et al. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes[J]. Anal Chem,2004,76 (4) : 1083. 被引量:1

二级参考文献17

  • 1[1]Planeiz J. M., Coustel N., Coq B. et al.. J. Am. Chem. Soc.[J], 1994, 116: 7 395-7 396 被引量:1
  • 2[2]Che G. L., Lakshmi B. B., Fisher E. R. et al.. Nature[J], 1998, 393: 346-349 被引量:1
  • 3[3]Xue B., Chen P., Hong Q. et al.. J. Mater. Chem.[J], 2001, 11: 2 378-2 381 被引量:1
  • 4[4]Yu R. Q., Chen L. W., Liu Q. P. et al.. Chem. Mater.[J], 1998, 10: 718-722 被引量:1
  • 5[5]Rajesh B., Thampi K. R., Bonard J. M. et al.. J. Mater. Chem.[J], 2000, 10: 1 575-1 579 被引量:1
  • 6[6]Lordi V., Yao N., Wei J.. Chem. Mater.[J], 2001, 13: 733-737 被引量:1
  • 7[7]Liu Z. L., Lin X., Lee J. Y. et al.. Langmuir[J], 2002, 18: 4 054-4 060 被引量:1
  • 8[8]Li W. Z., Liang C. H., Qiu J. S. et al.. Carbon[J], 2002, 40: 791-194 被引量:1
  • 9[9]Chen W. X., Lee J. Y., Liu Z. L.. Chem. Comm.[J], 2002: 2 588-2 589 被引量:1
  • 10[10]Chen P., Zhang H. B., Lin G. D. et al.. Carbon[J], 1997, 35: 1 495-1 501 被引量:1

共引文献57

同被引文献34

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部