期刊文献+

Orders of the Renner Monoids of Adjoint Type

Orders of the Renner Monoids of Adjoint Type
下载PDF
导出
摘要 In this paper, we find the orders of the Renner monoids for J-irreducible monoids K*p(G), where G is a simple algebraic group over an algebraically closed field K, and p : G → GL(V) is the irreducible representation associated with the highest root. In this paper, we find the orders of the Renner monoids for J-irreducible monoids K*p(G), where G is a simple algebraic group over an algebraically closed field K, and p : G → GL(V) is the irreducible representation associated with the highest root.
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2008年第1期94-102,共9页 数学研究与评论(英文版)
基金 the National Natural Science Foundation of China (No. 10471116).
关键词 Renner monoid Weyl group type map J-irreducible monoid order. Renner monoid Weyl group type map J-irreducible monoid order.
  • 相关文献

参考文献10

  • 1LI Zhuo, LI Zhen-heng, CAO You-an. Orders of the Renner monoids [J]. J. Algebra, 2006, 301(1): 344-359. 被引量:1
  • 2LI Zhuo, PUTCHA M S. Types of reductive monoids [J]. J. Algebra, 1999, 221(1): 102-116. 被引量:1
  • 3LI Zhuo, RENNER L E. The lattice of J-classes of (J,σ)-irreducible monoids [J]. J. Algebra, 1997, 190(1): 172-194. 被引量:1
  • 4LI Zhen-heng. Idempotent lattices, Renner monoids and cross section lattices of the special orthogonal algebraic monoids [J]. J. Algebra, 2003, 270(2): 445-458. 被引量:1
  • 5LI Zheng-heng. The cross section lattices and Renner monoids of the odd special orthogonal algebraic monoids [J]. Semigroup Forum, 2003, 66(2): 273-287. 被引量:1
  • 6Li Zheng-heng, RENNER L, The Ranner monoids and cell decompositions of the symplectic algebraic monoids [J]. International Journal of Algebra and Computation, 2003, 13: 111-132. 被引量:1
  • 7PUTCHA M S, RENNER L. The system of idempotents and the lattice of J-classes of reductive algebraic monoids [J]. J. Algebra, 1988,. 116(2): 385-399. 被引量:1
  • 8RENNER L. Classification of semisimple algebraic monoids [J]. Trans. Amer. Math. Soc., 1985, 292(1): 193-223. 被引量:1
  • 9RENNER L. Linear Algebraic Monoids [M]. Springer-Verlag, Berlin, 2005. 被引量:1
  • 10SOLOMON L. An introduction to reductive monoids [J]. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 466, Kluwer Acad. Publ., Dordrecht, 1995. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部