期刊文献+

微通道反应器在合成反应中的应用 被引量:32

Application of Microfluidic Reactors on Synthesis Reactions
下载PDF
导出
摘要 微流控学(microfluidics)是在微米级结构中操控纳升至皮升体积流体的技术与科学,是近10年来迅速崛起的新交叉学科。流体在微流控芯片微米级通道中,由于尺度效应导致了许多不同于宏观体系的特点,例如分子间扩散距离短、微通道的比表面积大、传热和传质速度快等,促进了微流控芯片在有机合成反应中的发展。本文总结了微通道反应器的特点、微通道反应器中常用的流体驱动技术和微通道中流体的混合技术。通过一系列在微流控芯片中进行的有机合成反应,包括液-液均相反应、催化反应、相转移反应和异常激烈的有机合成反应等,进一步说明了微通道反应器同时具有微量和连续流动的优点。微通道反应器的发展不但在合成路线的优化方面有重要意义,而且有助于相关化学工业过程的改进。 Microfluidics is the technology that processes or manipulates small (10^-9 to 10^-18 litres) amounts of fluids using channels with dimensions of tens to hundreds of micrometres. Microfluidic reactors have a number of advantages over conventional chemical laboratory batch methodologies, such as short molecular diffusion distance, large specific surface area, high mass and heat transfer capacity, which will be expected to promote highly effective chemical reactions in the microfluidic reactors. The main features of microfluidic reactors, the method to drive liquid through the microchannels and the method for mixing liquids in microchannels axe summarized in this review. Subsequently, the effects of downscaling reaction vessels as well as the advantages of the continuous flow microfluidic approach axe illustrated by a number of examples of organic reactions carried out in microfluidic devices, including liquid- liquid miscible fluid reaction, catalytic reaction, phase transfer reaction and strongly exothermic or endothermic organic synthesis. The development of microfluidic reactors is not only of great significance for optimizing many synthetic procedures, but also helpful for improving related chemical industry processes
机构地区 浙江大学化学系
出处 《化学进展》 SCIE CAS CSCD 北大核心 2008年第1期60-75,共16页 Progress in Chemistry
基金 国家自然科学基金项目(No.20475049)资助
关键词 微通道反应器 有机合成 微流体驱动 microfluidic reactors organic synthesis microfluidic manipulation
  • 相关文献

参考文献143

  • 1Dittrich P S, Manz A. Nature Rev. Dru. Discov., 2006, 5: 211-218 被引量:1
  • 2Jahnisch K, Hessel V, Lowe H, et al. Angew. Chem. Int. Ed., 2004, 43(4): 406-446 被引量:1
  • 3Veser G, Chemical Engineering Science, 2001, 56:1265-1273 被引量:1
  • 4Kolb G, Hessel V. Chemical Engineering Journal, 2004, 98 : 1- 38 被引量:1
  • 5Mitchell M C, Spikmans V, de Mello A J. Analyst, 2001; 126: 24-27 被引量:1
  • 6Losey M W, Schmidt M A, Jensen K F, Ind. Eng, Chem. Res,, 2001, 40:2555-2562 被引量:1
  • 7Hisamoto H, Saito T, Tokeshi M, et al, Chem. Commun,, 2001, 2662-2663 被引量:1
  • 8Brivio M, Verboom W, Reinhoudt D N, Lab on a Chip, 2006, 6 : 329-344 被引量:1
  • 9Iles A, Fortt R, de Mello A J, Lab on a Chip, 2005, 5: 540-544 被引量:1
  • 10Kikutani Y, Horiuchi T, Uchiyama K, et al, Lab on a Chip, 2002, 2:188-192 被引量:1

二级参考文献9

共引文献2

同被引文献342

引证文献32

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部