期刊文献+

一类具有时滞的流行病模型分析 被引量:2

Analysis of an Epidemic Model with Time Delay
原文传递
导出
摘要 讨论了一类带有时滞的SE IS流行病模型,并讨论了阈值、平衡点和稳定性.模型是一个具有确定潜伏期的时滞微分方程模型,在这里我们得到了各类平衡点存在条件的阈值R0;当R0<1时,只有无病平衡点P0,且是全局渐近稳定的;当R0>1时,除无病平衡点外还存在唯一的地方病平衡点Pe,且该平衡点是绝对稳定的. An SEIS epidemic model with time delay is discussed in this paper, the basic reproduction number R0 is obtained for the epidemic model. The equilibrium and stability are also discussed in this paper. The epidemic model is a differential equation with fixed time delay. The equilibria are decided by R0. Only the disease-free equilibrium arises when R0 〈 1, and the disease-free equilibrium is globally asymptotic stability. The endemic equilibrium arises when R0 〉 1, and the endemic equilibrium is absolutely stability. The results above are proved in this paper.
出处 《数学的实践与认识》 CSCD 北大核心 2007年第24期83-88,共6页 Mathematics in Practice and Theory
关键词 传染病模型 时滞 平衡点 稳定性 绝对稳定 阈值 epidemic model time delay equilibrium stability absolutely stable threshold
  • 相关文献

参考文献11

  • 1Greenhalgh D. Hopf Bifurcation in epidemic models with a latent period and nonpermanent immunity[J]. Math Comput Modelling, 1997,25(3) :85--107. 被引量:1
  • 2Kribs-Zaleta C M, Velasco-Hernandez J X. A simple vaccination model with multiple endemic states[J]. Math Biosci, 2000,164(2) : 183--201. 被引量:1
  • 3Li J, Ma Z. Stability analysis for SIS epidemic models with vaccination and constant population size[J]. Discrete and Continuous Dynamical Systems-series B, 2004, 4(3):635--642. 被引量:1
  • 4Li J, Ma Z. Qualitative analysis of SIS epidemic models with vaccinationand varying total population size[J]. Mathl Comput Modelling, 2002.35 (11--12):1235--1243. 被引量:1
  • 5Brauer F. A model for an SI disease inan age-structured population[J]. Discrete and Continuous Dynamical Systems-series B, 2002, 2(2): 257--264. 被引量:1
  • 6Cooke K, Yorke J. Some equations modelling growth processes and gonorrhea epidemics[J]. Math Biosci, 1973, 16(1--2):75--101. 被引量:1
  • 7Culshaw R V, Ruan S. A delay-differential equation model of HIV infection of CD4^+ [J]. Math Biosci,2000, 165(1):27--39. 被引量:1
  • 8Khan Q J A, Krishnan E V, AI-Khodh. An epidemic model with a time delay in transmission[J]. Applications of Mathematics, 2003,48(1 ) : 193--203. 被引量:1
  • 9Thieme H R. Persistence under relaxed point-dissipativity (with applications to an endemic model)[J]. SIAM J Math Anal, 1993,24 (2):407--435. 被引量:1
  • 10马知恩等著..传染病动力学的数学建模与研究[M].北京:科学出版社,2004:399.

同被引文献22

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部