摘要
在Banach空间中引入和研究了一类含(A,η)-增生映象的变分包含,利用与(A,η))-增生映象相联系的预解算子性质,证明了这类变分包含解的存在性和唯一性.对这类变分包含的逼近解也建立了一个新的Mann迭代算法,并讨论了算法的收敛性.
In this paper, we introduce and study a system of variational inclusions involving (A, η) -accretive mappings in Banach spaces. Using the resolvent operator associated with (A, η) -accretive mappings, we prove the existence and uniqueness of the solution for this system of variational inclusions. We also construct a new Mann iterative algorithm for approximating the solution of this system of variational inclusions and discuss the convergence of the algorithm.
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第12期12-15,共4页
Journal of Southwest University(Natural Science Edition)
基金
国家自然科学基金资助项目(10471151)
重庆市教委科技资助项目(KJ071305).
关键词
(A
η)-增生映象
松驰余强制映象
变分包含组
预解算子
存在性和收敛性
(A, η)-accretive mapping
relaxed cocoercive mapping
system of variational inclusion
resolvent operator
existence and convergence