1Miller V S. Short Programs for Functions on Curves[DB/ OLJ. http://crypto. stanford. edulmiller/miller. pdf, 1986- OS-06. 被引量:1
2Ioux A. A one round protocol for tripartite Diffie-Hellman[CJ / / Proceedings of the 4th International Symposium on Algorithmic Number Theory. 2000 :385-394. 被引量:1
3Boneh D, Franklin M K. Identity-based encryption from the Weil pairing[CJ/ / Proceedings of the 21st Annual In?ternational Cryptology Conference on Advances in Cryptolo?gy. 2001 :213-229. 被引量:1
4Hess F, Smart N P, Vercauteren F. The Eta pairing revisi?ted[J]. IEEE Transactions on Information Theory, 2006, 52(10) :4595-4602. 被引量:1
5Zhao C, Zhang F, HuangJ. A note on the Ate pairing[J]. InternationalJournal of Information Security, 2008,7 (6) :379-382. 被引量:1
6Alfred Menezes, Scott Vanstone, Tatsuaki Okamoto. Re?ducing elliptic curve logarithms to logarithms in a finite field[CJ / / Proceedings of the 23rd Annual ACM Symposi- um on Theory of Computing. 1991 :80-89. 被引量:1
7Jean-Claude Bajard, Laurent Imbert, Grabam AJullien, et al. A CRT -based Montgomery Multiplication for Finite Fields of Small Characteristic[DB/ OL]. http://hal. archives-ouver?tes. fr/ docsiOO/1O/64/55/ pdf! d512. pdf, 2005-07-15. 被引量:1
8Alfred Menezes. An Introduction to Pairing-based Cryptog?raphy[DB/OLJ. http://cacr.uwaterloo. cal - ajmeneze/ publications/pairings. pdf, 2008-12-20. 被引量:1
9Soonhak Kwon. Efficient Tate pairing computation for su?persingular elliptic curves over binary fields[CJ / / Pro?ceedings of the 10th Australasian Conference on Informa?tion Security and Privacy. 2005: 134-145. 被引量:1
10McCusker K, 0' Connor N, Diamond D. Low-energy finite field arithmetic primitives for implementing security in wireless sensor networks[CJ / / Proceedings of the 2006 In?ternational Conference on Communications, Circuit and Systems. 2006,3: 1537-1541. 被引量:1