期刊文献+

哈密顿系统正则变换在时变最优控制中的应用 被引量:1

TIME-VARYING OPTIMAL CONTROL VIA CANONICAL TRANSFORMATION OF HAMILTONIAN SYSTEM
下载PDF
导出
摘要 利用哈密顿系统正则变换和生成函数理论求解线性时变最优控制问题,构造了新的最优控制律形式并提出了控制增益计算的保结构算法.利用生成函数求解最优控制导出的哈密顿系统两端边值问题,并构造线性时变系统的最优控制律,由第2类生成函数所构造的最优控制律避免了末端时刻出现无穷大反馈增益.控制系统设计中需求解生成函数满足的时变矩阵微分方程组.根据生成函数与哈密顿系统状态转移矩阵之间的关系,从正则变换的辛矩阵描述出发,导出了求解这组微分方程组的保结构递推算法.为了保持递推计算中的辛矩阵结构,哈密顿系统状态转移矩阵的计算中利用了Magnus级数. This paper presents a unified canonical transformation and generating function approach, including associated numerical algorithms, for linear time-varying optimal control problems with various terminal constraints. Generating functions are employed to find the optimal control law by solving Hamiltonian two-point-boundary-value problems. The time-varying optimal control laws constructed by the second type generating function do not have infinite feedback gain at terminal time, which is different from other existing solutions. Motivated by practical design of time-varying optimal control systems, a structure-preserving matrix recursive algorithm is proposed to solve coupled time-varying matrix differential equations of the generating function; derivation of the recursive algorithm is based on symplectic formulation of canonical transformation. To preserve symplectic structure of matrices in the recursive computation, state transition matrices of the Hamiltonian system are calculated by Magnus series. In fact, the canonical transformation and generating function method leads to a geometric perspective to the design and computation of optimal control systems.
出处 《力学学报》 EI CSCD 北大核心 2008年第1期86-97,共12页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金资助项目(10632030 10472023).~~
关键词 最优控制 正则变换 生成函数 哈密顿系统 线性时变系统 optimal control, canonical transformation, generating function, Hamiltonian system, linear time-varying system
  • 相关文献

参考文献5

二级参考文献5

共引文献7

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部