期刊文献+

非线性颤振系统中既是超临界又是亚临界的Hopf分岔点研究 被引量:15

Supercritical as Well as Subcritical Hopf Bifurcation in Nonlinear Flutter Systems
下载PDF
导出
摘要 研究了二元机翼非线性颤振系统的Hopf分岔.应用中心流形定理将系统降维,并利用复数正规形方法得到了以气流速度为分岔参数的分岔方程.研究发现,分岔方程中一个系数不含分岔参数的一次幂,故使得分岔具有超临界和亚临界双重性质.用等效线性化法和增量谐波平衡法验证了所得结果. The Hopf bifurcations of an airfoil flutter system with a cubic nonlinearity are investigated with the flow speed as a bifurcation parameter. The center manifold theory and complex normal form method were used to obtain the bifurcation equation. Interestingly, for a certain linear pitching stiffness the Hopf bifurcation is both supercritical and subcritical. It is found, mathematically, this is caused by the fact that one coefficient in the bifurcation equation does not contain the first power of the bifurcation parameter. The solutions of the bifurcation equation are validated by the equivalent linearization method and incremental harmonic balance method.
出处 《应用数学和力学》 EI CSCD 北大核心 2008年第2期181-187,共7页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10772202) 教育部博士学科点专项基金资助项目(20050558032) 广东省自然科学基金资助项目(07003680 05003295)
关键词 非线性颤振 HOPF分岔 超临界 亚临界 极限环振动 nonlinear flutter Hopf bifurcation supercritical subcritical limit cycle oscillation
  • 相关文献

参考文献17

  • 1B H K, Price S J, Wong Y S. Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos[ J]. Progress Aerosp Sci, 1999,35(3) :205-344. 被引量:1
  • 2Liu J K, Zhao L C. Bifurcation analysis of airfoil in incompressible flow [ J ]. J Sound Vibration, 1992,154( 1 ) : 117-124. 被引量:1
  • 3Shahrzad P, Mahzoon M. Limit cycle flutter of airfoils in steady and unsteady flows[ J ]. J Sound Vibration ,2002,256(2) :213-225. 被引量:1
  • 4Yang Y R. KBM method of analyzing limit cycle flutter of a wing with an external store and comparison with wind tunnel test[J]. J Sound Vibration, 1995,187(2) :271-280. 被引量:1
  • 5Liu L P, Dowell E H. The secondary bifurcation of an aeroelastic airfoil motion: effect of high harmonics[ J]. Nonlinear Dyn ,2004,37( 1 ) :31-49. 被引量:1
  • 6蔡铭,刘济科,李军.多自由度强非线性颤振分析的增量谐波平衡法[J].应用数学和力学,2006,27(7):833-838. 被引量:19
  • 7Kousen K A, Bendiksen O O. Limit cycle phenomena in computational transonic aeroelasticity[ J]. J Aircraft, 1994,31(6) : 1257-1263. 被引量:1
  • 8Liu J K, Zhao L C, Fang T. Bifurcation point analysis of airfoil flutter with structural nonlinearity [ A]. In: HUANG Wen-hu, Ed. Advances in Nonlinear Dynamics in China-Theory and Practice [ C]. Chapter 3. Lisse,the Netherland: Swets & Zeitlinger Publishers, 2002. 被引量:1
  • 9Lee B H K, Gong L, Wong Y S. Analysis and computation of nonlinear dynamic response of a two- degree-of- freedom system and its application in aeroelasficity[ J]. J Fluids Stract, 1997, 11 (3) : 225- 246. 被引量:1
  • 10Liu L, Wong Y S, Lee B H K. Application of the center manifold theory in nonlinear aeroelasticity [ J]. J Sound Vibration, 2000,234(4) : 641-659. 被引量:1

二级参考文献18

  • 1Bi Qinsheng,J Comput Appl Math,1999年,102卷,2期,195页 被引量:1
  • 2Pei Yu,J Sound Vibration,1998年,217卷,4期,691页 被引量:1
  • 3毕勤胜,力学学报,1997年,29卷,12期,573页 被引量:1
  • 4陈予恕,非线性振动系统的分叉和混沌理论,1993年 被引量:1
  • 5Huseyin K,Appl Math Modelling,1988年,12卷,189页 被引量:1
  • 6Yu P,IEEE Transactionsof Automatic Control,1988年,33卷,28页 被引量:1
  • 7Yu P,Dynamicsand Stabilityof Systems,1986年,1卷,73页 被引量:1
  • 8Chen Y,Wu J. Slowly oscillating periodic solutions for a delayed frustrated network of two neurons[J]. J Math Anal Appl,2001,259( 1 ): 188-208. 被引量:1
  • 9Wei J, Ruan S. Stability and bifurcation in a neural network model with two delays[ J ]. Physica D,1999,130(3/4): 255-272. 被引量:1
  • 10Faria T. On a planar system modelling a neuron network with memory[ J]. J Differential Equations,2000,168( 1 ): 129-149. 被引量:1

共引文献38

同被引文献118

引证文献15

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部