期刊文献+

SVDD在类别不平衡学习中的应用 被引量:5

Support Vector Date Description Implemented in Class-Imbalance Learning
下载PDF
导出
摘要 在解决单分类问题的支持向量数据描述算法的基础上提出了适用于两类不平衡问题的I-SVDD(imbalance-support vector date description)算法.该算法通过增加样本的分布信息,对带野值的SVDD算法中的C值重新进行了定义.采用该算法对UC I数据集和人工样本集进行实验表明,改进后的I-SVDD算法比带野值的SVDD算法的AUC值平均提高12%以上;比AdaBoost算法在正类查全率上平均提高35%,精确度也提高了2%以上.I-SVDD算法在保证少数类样本高分类精度前提下,还有效提高了全样本的分类精度,更符合现实不平衡问题中对少数类样本的处理要求. In this paper, an imbalance support vector data description (I-SVDD) algorithm for two-class imbalance problem is proposed based on the SVDD algorithm. In this algorithm, the C value of SVDD with negative samples is redefined for each sample with data distribution information. We verified the efficiency of algorithm using artificial data and UCI datasets for the data imbalanced classification problem. Compared with SVDD with negative samples, the AUC value of I-SVDD is increased by 12%. Compared with AdaBoost, the recall of positive class is increased by 35%, and the precision increased by 2%.
出处 《应用科学学报》 CAS CSCD 北大核心 2008年第1期79-84,共6页 Journal of Applied Sciences
基金 国家自然科学基金(No.60603029) 江苏省自然科学基金(No.BK2005009)资助项目
关键词 不平衡类别 单分类 支持向量数据描述 ADABOOST imbalanced class distribution one-class classification support vector data description (SVDD) AdaBoost
  • 相关文献

参考文献13

  • 1CHAWLA N V, JAPKOWICZ N, KOLCZ A. Editorial : special issue on learning from imbalanced data sets [ J ]. ACM SIGKDD Explorations, 2004, 6 (1) : 1 -6. 被引量:1
  • 2JAPKOWICZ N. Proceedings of AAAI' 2000 workshop on learning from imbalanced data sets [ C ]//American Association for Artificial Intelligence (AAAI) Conference Technical Report WS-00-05, 2000. 被引量:1
  • 3DIETTERICH T G, MARGINEANTU D, PROVOST F, TURNEY P. Proceedings of the ICML' 2003 workshop on cost- sensitive learning [ C ]// International Conference on Machine Learning, 2003. 被引量:1
  • 4NUGROHO A S, KUROYANAGI S, IWATA A. A solution for imbalanced training sets problem by comb NET and its application on fog forecasting [ C ]//IEICE Trans on Information Ⅱ & Systems,2002 ,E85-D(7) : 1165 - 1174. 被引量:1
  • 5CHAWLA N V, BOWYER K W, HALL L O, KEGELMEYER W P. SMOTE: synthetic minority over-sampling technique [ J ]. Journal of Artificial Intelligence Research, 2002, 16:321 -357. 被引量:1
  • 6VIOLA P, JONES M. Fast and robust classification using asymmetric AdaBoost and a detector cascade [ J ]. Pattern Anal Mach Intell, 1998, 20( 1 ): 39-51. 被引量:1
  • 7ELKAN C. The foundation of cost-sensitive learning [ C ]// In:B. Nebel( eds. ) Proc of the 7th Intern Joint Conf on Artificial Intelligence ( LICAI2001 ). Seattle, Washington, Morgan Kaufmann ,2001,2:973 - 978. 被引量:1
  • 8VEROPOULOS K, CAMPBELL C, CRISTIANINI N. Controlling the sensitivity of support vector machine[ C ]//In : Thomas Dean (eds.), Proc of the Sixteenth International Joint Conference on Artificial Intelligence ( IJCAI99 ), Workshop ML3, Stockholm, 1999:55 - 60. 被引量:1
  • 9RASKUTTI B, KOWALCZYK A. Extreme re-balanclng for svms : a case study [ C ]//In: T. Fawcett, N. Mishra (eds.) , Workshop on Learning from Imbalanced Datasets Ⅱ,ICML. AAAI Press ,2003. 被引量:1
  • 10DRUMMOND C, HOLTE R C. C4.5, class imbalance, and cost sensitivity: why under-sampling beats over- sampling [ C ]//In : Proceedings of ICML ' 2003 Workshop on Learning from Imbalanced Data Sets, 2003. 被引量:1

共引文献1

同被引文献56

  • 1刘胥影,吴建鑫,周志华.一种基于级联模型的类别不平衡数据分类方法[J].南京大学学报(自然科学版),2006,42(2):148-155. 被引量:23
  • 2郑恩辉,许宏,李平,宋执环.基于ν-SVM的不平衡数据挖掘研究[J].浙江大学学报(工学版),2006,40(10):1682-1687. 被引量:8
  • 3Reed I S, Yu X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution [J]. IEEE Transactions on Acoustics, Speech and Signal Processing(S0096-3518), 1990, 38(10): 1760-1770. 被引量:1
  • 4Stocker A D, Schaum A P. Application of stochastic mixing models to hyperspectral detection problems [J]. Proc. of SPIE (S0277-786X), 1997, 3071: 47-60. 被引量:1
  • 5Schweitzer S, Moura J M. Efficient detection in Hyperspectral imagery [J]. IEEE Trans. on Image Proeessing(S 1057-7149), 2001, 10(4): 584-597. 被引量:1
  • 6Amit Banerjee, Philippe Burlina, Chris Diehl. A Support Vector Method for Anomaly Detection in Hyperspectral Imagery [J]. IEEE Transactions on Geoscience and Remote Sensing(S0196-2892), 2006, 44(8): 2282-2291. 被引量:1
  • 7Tax D M J, Duin R P W. Support vector domain description [J]. Pattern Recognition Letters(S0167-8655), 1999, 20(11/13): 1191-1199. 被引量:1
  • 8Tax D M J, Duin R P W. Support vector data description [J]. Machine Learning(S0885-6125), 2004, 54(1): 45-66. 被引量:1
  • 9Antoni J, Danieret J. Effective vibration analysis of ic engines using cyclostationarity part I: a methodology or condition monitoring [J]. Journal of Sound and Vibration, 2002, 257 (5): 815-837. 被引量:1
  • 10Vapnik V. The Nature of Statistical Learning Theory [M]. New York: Springer-Verlag, 1999. 被引量:1

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部