期刊文献+

钙基吸收剂循环锻烧/碳酸化反应过程特性研究 被引量:36

Carbonation Characteristics in Calcium-sorbents Cyclic Calcination/Carbonation Reaction Process
下载PDF
导出
摘要 在煅烧/碳酸化反应器上研究碳酸化温度、煅烧温度、颗粒粒径对石灰石和白云石循环煅烧/碳酸化反应(CCR)吸收CO2过程中碳酸化转化率的影响,并用CO2吸收量比较其吸收CO2的能力的大小。结果表明:碳酸化温度为700℃时石灰石的转化率最高,白云石在650℃时转化率最高,在650-700℃时白云石的转化率远高于石灰石,但二者CO2吸收量相差不大;当煅烧温度超过1050℃时石灰石碳酸化转化率随循环次数增大急剧衰减,而白云石则衰减程度不大,高温煅烧时白云石的CO2吸收量比石灰石高;随粒径的增大,石灰石的转化率逐渐减小,而白云石则存在最佳的粒径分布使转化率最大。随循环反应次数的增加,石灰石煅烧产物的微观结构变化较大,而白云石则变化较小。 In a calcination/carbonation reactor, the effects of carbonation temperature, calcination temperature and particle size on carbonation conversion of limestone and dolomite were experimentally investigated in the cyclic calcination/carbonation reaction (CCR) for CO2 capture. CO2 capture capacity of limestone and dolomite could be compared by their CO2 absorbability. The results show that carbonation conversion of limestone is maximum at 700 ℃ for carbonation, and the optimum carbonation temperature for dolomite is 650 ℃. The conversion for limestone is much higher than that for dolomite in range of 650-700 ℃ for carbonation. However, the difference of their CO2 absorbability is little. Although carbonation conversion for limestone decays sharply at the calcination temperature over 1 050℃, conversion for dolomite drops little with the number of cycles increase. CO2 absorbability of dolomite is much greater than that of limestone at 1050℃ for calcination. Conversion for limestone decreases with particle size increasing, while there is an optimum particle size range for dolomite to make conversion achieve maximum. The microstructure of calcined limestone changes a lot with number of cycles, however, it is not so obvious for dolomite.
出处 《中国电机工程学报》 EI CSCD 北大核心 2008年第2期55-60,共6页 Proceedings of the CSEE
基金 国家重点基础研究发展规划项目(2006CB705806) 江苏省高校研究生科技创新计划项目 东南大学优秀博士学位论文基金项目。~~
关键词 钙基吸收剂 煅烧 碳酸化 CO2减排 calcium-sorbents calcination carbonation CO2 abatement
  • 相关文献

参考文献17

  • 1Silaban A, Harrison P. High temperature capture of carbon dioxide: characteristics of the reversible reaction between CaO (s) and CO2 (g) [J]. Chem Eng Comm, 1995, 137(7): 177-190. 被引量:1
  • 2Abanades J C, Rubin E S, Anthony E J. Sorbent cost and performance in CO2 capture systems[J]. Ind Eng Chem Res, 2004, 43(13): 3462-3466. 被引量:1
  • 3王智化,王勤辉,骆仲泱,周俊虎,樊建人,岑可法.新型煤气化燃烧集成制氢系统的热力学研究[J].中国电机工程学报,2005,25(12):91-97. 被引量:35
  • 4关键,王勤辉,骆仲泱,岑可法.新型近零排放煤气化燃烧利用系统的优化及性能预测[J].中国电机工程学报,2006,26(9):7-13. 被引量:24
  • 5Shimizu T, Hirama T, Hosoda H, et al. A twin fluid-bed reactor for removal of CO2 from combustion processes [J]. Trans Ⅰ Chem E, 1999, 77(a1):62-68. 被引量:1
  • 6Lopez O A, Harrision D P. Hydrogen production using sorpfion-enhanced reaction[J]. Ind Eng Chem Res, 2001, 40(23): 5102-5109. 被引量:1
  • 7Abanades J C, Alvarez D. Conversion Limits in the Reaction of CO2 with Lime[J]. Energy and Fuels, 2003, 17(2): 308-315. 被引量:1
  • 8Wang J S, Anthony E J. On the decay behavior of the CO2 absorption capacity of CaO-based sorbets [J]. Ind Eng Chem Res, 2005, 44(3): 627-629. 被引量:1
  • 9Chrissafits K, Paraskevopoulos K M. The effect of sintering on the maximum capture efficiency of CO2 using a carbonation/calcination cycle of carbonate rocks [J]. Journal of Thermal Analysis and Calorimetry, 2005, 81(5): 463-468. 被引量:1
  • 10Johnsen K, Ryu H J, Grace J R. Sorption-enhanced steam reforming of methane in a fluidized bed reactor with dolomite as CO2-acceptor [J]. Chemical Engineering Science, 2006, 61(4): 1195-1202. 被引量:1

二级参考文献35

共引文献50

同被引文献554

引证文献36

二级引证文献141

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部