摘要
考虑d维连续过程X=(Xt,t≥0)的非线性Ito随机微分方程,利用P(Wd)上非线性映射Schauder-Tychonov型不动点定理证明在有界Lipschitz条件下方程dXt=α[t,X,P。X-1]dBt+β[t,X,P。X-1]dt存在唯一解.
A sort of nonlinear stochastic differential equation is studied. Using a fixed point theorem of the Schauder Tychonov type, we prove an existence and uniquence theorem of weak solution under the bounded Lipschitz condition.
出处
《工程数学学报》
CSCD
北大核心
1997年第3期62-66,共5页
Chinese Journal of Engineering Mathematics