期刊文献+

带超强奇异积分的Galerkin边界元法

Garlerkin Boundary Element Method with Hyper Singular integral kernel
下载PDF
导出
摘要 当采用Calderon投影的第二个表达式的直接边界公式解Laplace方程的Neumann问题时,需求解含超强奇异性的第一类Fredholm积分方程。为了克服积分方程的奇异性,采用Galerkin边界元方法,利用广义函数的分部积分公式,把对积分核的两阶导数转移为未知边界量的旋度。对二维问题,采用线性单元时,边界旋度可离散为常向量,从而得到简单的计算公式,避免了超强奇异积分数值计算的困难。数值算例验证了这种方法的有效性和实用性。 A Galerkin Boundary Elements was applied to solve the first kind of integral equation with hyper-singularity, which can be deduced from the direct boundary integral formula for the Neumann problem of Laplace equation. The concept of integration by parts in the sense of distributions was used. When boundary rotation is introduced, the two order derivatives of singular kernel are shifted to the boundary rotation of unknown function in the Galerkin variational formulation. While linear boundary elements are used for 2-dimensional problems, the boundary rotation on each element can be discretized into a constant vector, so that the integration can be performed in a simple way and the difficulty of numerical calculation for hyper-singularity is overcome. The results of numerical examples demonstrate that the scheme presented is practical and effective.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第1期115-118,共4页 Journal of Chongqing University
基金 国家科技部国际科技合作重点项目(2004DFA06400)
关键词 Galerkin边界元 超强奇异积分 LAPLACE方程 NEUMANN问题 Garlerkin boundary element method hyper singular integral Laplace equation Neumman problem
  • 相关文献

参考文献6

  • 1祝家麟著..椭圆边值问题的边界元分析[M].北京:科学出版社,1991:272.
  • 2NEDELEC J C. Equations integral, Chapitre XI[ C ]//Analyse mathematique et calcul numerique pour les sciences et les technique. Masson, 1984-1985:666-678. 被引量:1
  • 3BREBBIA C A. The boundary element method for engineers [ M ]. London : Pentech Press, 1978. 被引量:1
  • 4余德浩著..自然边界元方法的数学理论[M].北京:科学出版社,2006:539.
  • 5张守贵,祝家麟,董海云.用双层位势求解Neumann外问题的Galerkin边界元解法[J].重庆大学学报(自然科学版),2006,29(3):103-106. 被引量:3
  • 6李开泰,黄艾香.张量分析极其应用[M].西安:西安交通大学出版社,1984. 被引量:1

二级参考文献3

  • 1JEAN-CLAUDE NEDELEC. Finite Element for Exterior Problems Using Integral Quations [ J ]. International Journal for Numerical Methods in Fluids, 1987,7 : 1 229 - 1 234. 被引量:1
  • 2BREBBIA C A. The Boundary Element Method for Engineers[M].London: Pentech Press, 1978. 被引量:1
  • 3张洁,祝家麟,张凯.Laplace方程的Galerkin边界元解法[J].重庆大学学报(自然科学版),2003,26(10):39-41. 被引量:7

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部