摘要
当采用Calderon投影的第二个表达式的直接边界公式解Laplace方程的Neumann问题时,需求解含超强奇异性的第一类Fredholm积分方程。为了克服积分方程的奇异性,采用Galerkin边界元方法,利用广义函数的分部积分公式,把对积分核的两阶导数转移为未知边界量的旋度。对二维问题,采用线性单元时,边界旋度可离散为常向量,从而得到简单的计算公式,避免了超强奇异积分数值计算的困难。数值算例验证了这种方法的有效性和实用性。
A Galerkin Boundary Elements was applied to solve the first kind of integral equation with hyper-singularity, which can be deduced from the direct boundary integral formula for the Neumann problem of Laplace equation. The concept of integration by parts in the sense of distributions was used. When boundary rotation is introduced, the two order derivatives of singular kernel are shifted to the boundary rotation of unknown function in the Galerkin variational formulation. While linear boundary elements are used for 2-dimensional problems, the boundary rotation on each element can be discretized into a constant vector, so that the integration can be performed in a simple way and the difficulty of numerical calculation for hyper-singularity is overcome. The results of numerical examples demonstrate that the scheme presented is practical and effective.
出处
《重庆大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2008年第1期115-118,共4页
Journal of Chongqing University
基金
国家科技部国际科技合作重点项目(2004DFA06400)