期刊文献+

MSMC跟踪算法在目标跟踪中的应用 被引量:6

Application of MSMC algorithm to visual tracking
下载PDF
导出
摘要 针对序贯蒙特卡罗(Sequential Monte Carlo,MC)算法存在的计算量大的缺点,提出了一种新的Mean Shift MonteCarlo(MSMC)目标跟踪算法。在传统的MC算法中采取Mean Shift这种梯度最优下降法来寻找局部最大样本值,以目标的颜色特征建立目标状态空间模型,并用Bhattacharyya系数作为评价函数给出样本的权值。算法以少于300个样本(实验用200个样本)来保持对目标运动状态预测的多样性,有效地克服了MC算法收敛速度较慢的弱点,将算法的计算时间从76 ms/frame降低到了35 ms/frame(跟踪窗口为28 pixel×26 pixel)。实验结果表明,提出的算法能够在发生遮挡的情况下实现较稳定的目标跟踪,使算法应用于实际工程成为可能。 A new Sequential Monte Carlo(MC) algorithm, Mean Shift Monte Carlo (MSMC) algorithm, is proposed for visual tracking in image sequences. The MSMC takes Mean Shift to converge the samples with smaller weight to look for the local maximum ones. A state space model of the object is established using the color cue, and the weights of samples are given by adopting the Bhattacharyya coefficients as the evaluation funtion. The MSMC algorithm can maintain the diversity less than 300 samples (200 samples arc used in experiments), so the consumed time can be decreased from 76 ms/ frame to 35 ms/frame (the tracking window is 28 pixel× 26 pixcl). The experimental results in real video data show that the algorithm can track objects stably in the case of obstruction and it is possible to be used in the practical projects.
作者 孟勃 朱明
出处 《光学精密工程》 EI CAS CSCD 北大核心 2008年第1期122-127,共6页 Optics and Precision Engineering
基金 中国科学院二期创新基金资助项目(No.C05T022)
关键词 目标跟踪 序贯蒙特卡罗算法 Mean SHIFT MC 局部最优 visual tracking sequential Monte Carlo (MC) algorithm Mean Shift Monte Carlo(MSMC) : local maximum
  • 相关文献

参考文献16

二级参考文献34

共引文献115

同被引文献49

  • 1孙中森,孙俊喜,宋建中,乔双.一种抗遮挡的运动目标跟踪算法[J].光学精密工程,2007,15(2):267-271. 被引量:30
  • 2CHENG Y. Mean shift, mode seeking, and clustering [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17 (8) : 790-799. 被引量:1
  • 3COMANICIU D, RAMESH V, MEER P. Kernelbased object tracking[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25 ( 5 ) : 564-577. 被引量:1
  • 4YIMAZ A. Object tracking by asymmetric kernel mean-shift with automatic scale and orientation selection [C]. IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2007 : 1-6. 被引量:1
  • 5CHENXP, YUSHSH, MAZHL. An improved mean-shift algorithm for object tracking[C]. Proceedings of the 7 th World Congress on Intelligent Control and Automation, IEEE,2008:5111-5114. 被引量:1
  • 6BIRCHFIELD S T, RANGARAJAN S. Spatiograms versus histograms for region based tracking [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, 2005:1158-1163. 被引量:1
  • 7O'CONAIRE C, O'CONNOR N, SMEATON A F. An improved spatiogram similarity measure for robust object localization [C]. ICASSP, IEEE, 2007:1069-1072. 被引量:1
  • 8NUMMIARO K, KOLLER-MEIER E,VAN G L. Color features for tracking non-rigid object[J]. Special Issue on Vision Surveillance, 2003,29 ( 3 ) : 345-355. 被引量:1
  • 9WANG ZH Q, FAN Y F, ZHANG G L, et al.. Robust face tracking algorithm with occlusions [J]. SPIE, 2007,67861:67861X1-67861X10. 被引量:1
  • 10COLI.INS R T, LIU Y X. On-line selection of discriminative tracking features [C]. Proceedings of the Ninth IEEE International Conference on Computer Vision, IEEE, 2003 : 346-352. 被引量:1

引证文献6

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部