期刊文献+

粗糙集-神经网络系统在商业银行贷款五级分类中的应用 被引量:29

Five-category evaluation of commercial bank's loan based on integration of rough sets and neural network
原文传递
导出
摘要 采用某股份制银行的698家贷款企业样本,基于粗糙集-Elman神经网络集成构建了贷款企业五级分类评估模型.该模型首先应用粗糙集理论约简出重要指标体系,然后将训练样本送入Elman神经网络进行学习和训练,进而对检验样本的风险等级进行判别.结果表明,与传统的logistic回归模型相比,粗糙集-神经网络系统对检验样本预测精度更高,是一种更为有效和实用的分类方法,为我国商业银行五级分类管理提供一个新的方法. Taking 698 loaning enterprises in a stock commercial bank as samples, this paper proposes integrating five-category model of rough sets and neural network. Firstly, the attributes are reduced using rough set and Elman neural network is trained with training samples , then the model is used to evaluate risk grade of testing samples. Empirical results shows that, comparing with logistic model, integration model of rough sets and neural network is an efficient and practical tool to evaluate credit risk of testing samples, and supplies commercial bank a new method in five-category management.
作者 薛锋 柯孔林
出处 《系统工程理论与实践》 EI CSCD 北大核心 2008年第1期40-45,55,共7页 Systems Engineering-Theory & Practice
基金 国家自然科学基金项目“信用风险评估理论、方法及其应用”(70171005)
关键词 粗糙集 ELMAN神经网络 信用风险 五级分类 rough set model Elman neural network credit risk five-category
  • 相关文献

参考文献12

  • 1Altman E I, et al. Zeta analysis: A new model to identity bankruptcy risk of corporations[ J]. Journal of Banking and Finance, 1977, 1(1) :29- 54. 被引量:1
  • 2Martin D. Early warning of bank failure: A logit regression approach[ J]. Journal of Banking and Finance, 1977, 1 (3):249- 276. 被引量:1
  • 3Ohlson J. Financial ratios and the probabilistic prediction of bankruptcy[ J]. Journal of Accounting Research, 1980, 18 (1):109- 131. 被引量:1
  • 4Altman E I, Marco G, Varettl F. Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience) [J]. Journal of Banking and Finance, 1994,18(3):505- 529. 被引量:1
  • 5Coats P, Pant L. Recognizing financial distress patterns using a neural network tool[ J]. Financial Management, 1993,22(3):142- 155. 被引量:1
  • 6Dan M C, Mark G R. A comparative analysis of current credit risk models[J]. Journal of Banking and Finance 2000,24( 1 ) : 59 - 117. 被引量:1
  • 7王春峰,万海晖,张维.基于神经网络技术的商业银行信用风险评估[J].系统工程理论与实践,1999,19(9):24-32. 被引量:192
  • 8王国胤..ROUGH集理论与知识获取[M],2001.
  • 9Dimitras A I, Slowinski R, Susmaga R. Business failure prediction using rough sets[J]. European Journal of Operational Research, 1999,114(2) :263 - 280. 被引量:1
  • 10Ahn B S, Cho S, Kim C. The integrated methodology of rough set theory and artificial neural network for business failure prediction [J]. Expert Systems with Applications,2000,18(2) :65 - 74. 被引量:1

二级参考文献13

  • 1Pawlak Z. Rough sets-theoretical aspects of reasoning about data[M]. Dordrecht :Kluwer Academic Publishers,1991:9-30. 被引量:1
  • 2Pawlak Z. Rough set theory and its application to data analysis[J]. Cybernetics and Systems, 1998,29(9):661-668. 被引量:1
  • 3Hu X H. Mining knowledge rules from databases-a rough set approach[A]. Proceedings of IEEE International Conference on Data Engineering[C]. Los Alamitos,1996:96-105. 被引量:1
  • 4Wang S K M ,Ziarko W. On optimal decision rules in decision tables[J]. Bulletin of Polish Academy of Sciences,1985,33(6):693-676. 被引量:1
  • 5Duntsch I,Gediga G. Statistical evaluation of rough set dependency analysis[J]. International Journal of Human-Computer Study, 1997,46(5) : 589- 604. 被引量:1
  • 6世界银行.新兴市场经济中的商业银行[M].北京:中国财政经济出版社,1994.. 被引量:4
  • 7曾国坚,银行风险论,1995年 被引量:1
  • 8世界银行,新兴市场经济中的商业银行,1994年 被引量:1
  • 9施鸿宝,神经网络及其应用,1993年 被引量:1
  • 10张尧庭,多元统计分析引论,1982年 被引量:1

共引文献259

同被引文献246

引证文献29

二级引证文献134

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部